17-423/723:
Designing Large-scale
Software Systems

Designing Interface
Specifications
Feb 5, 2025

Logistics

M1 due date changed to next Monday (Feb 10)
« HW1 returned later today

Leaning Goals

* Describe the role and importance of an interface specification
« Describe the structure and meaning of a specification

 Describe four different dimensions that must be considered
while designing a specification

Examples & figures based on https://ocw.mit.edu/ans7870/6/6.005/s16/

https://ocw.mit.edu/ans7870/6/6.005/s16/

Interface Specifications

Specification

« A statement of a desired behavior or quality attribute of a
software system

* Functional specification

* “The scheduling system must provide a way for the patient to modify
an existing appointment”

 Quality attribute specification

* “The system must be able to handle additional 5000 users without a
loss of latency” (scalability)

* Interface specification

* Describes a piece of functionality or a service that a component Is
expected to deliver to its clients

* Today’s focus!

Interface Specification

client implementor
 Contract between a client and a _
component |
 For clients: input
* Describes what a client needs to know
to use the component computation

* Describes what is expected as the
output, given an input

* Hides implementation details (secrets!)

* For implementors: output

* Describes implementation tasks to be
fulfilled by developers (or LLMS)

» Hides possible uses of the component
by clients (Q. Why is this good?)

Interface Specifications in Practice

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP Java CO”eCtiOnS API

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
Method Summary

compactl, compact2, compact3

java.util

CIaSS HaShset< E> Modifier and Type Method and Description

boolean add(E e)

Adds the specified element to this set if it is not already present.

java.lang.Object
java.util.AbstractCollection<E>

java.util.AbstractSet<E> void clear()
java.util.HashSet<E> Removes all of the elements from this set.
Object clone()

Returns a shallow copy of this HashSet instance: the elements ther

boolean contains(Object o)
Returns true if this set contains the specified element.

boolean isEmpty()
Returns true if this set contains no elements.

Iterator<E> iterator()
Returns an iterator over the elements in this set.

Interface Specifications in Practice

def add(numl, num2):

Python Docstrings

Add up two integer numbers.

This function simply wraps the "+ ° operator, and does not
do anything interesting, except for illustrating what
the docstring of a very simple function looks like.

Parameters

numl :

First number to add.
num2 : int

Second number to add.

Returns

The sum of ““numl™" and ~“num2’".
See Also
subtract : Subtract one integer from another.
Examples

>>> add(2, 2)

4

>>> add(25, @)
25

>>> add(1@, -10)
/]

Interface Specifications in Practice

Swagger Petstore T

[Base URL: petstore.swagger.io/v2 |
https://petstore.swagger.io/v2/swagger.json

/store/inventory Returns petinventories by status

This is a sample server Petstore server. You can find out more about Swagger

POST /store/order Place an order for a pet

Parameters
R E ST A P I D Name Description
O C body * order placed for purchasing the pet
object
(body) Example Value | Model

Il.i-dll: ,
"petId": @,
"quantity": 0,

"shipDate": "2025-02-03T21:44:39.405Z",
"status": "placed”,
"complete": true

Parameter content type

application/json

Specification: Elements

client implementor
« Each specification of a -
function is associated with
pre- & post-conditions

* Pre-condition

« What the component expects
from the client, expressed as a
condition over the function input
and/or component state satisfies postcondition

« Post-condition output

* What the component promises
to deliver, as a condition over
the function output and/or
component state

input
satisfies precondition

computation

Specification: Meaning

* Pre-condition = Post-condition
(l.e., logical implication)
* |If the client satisfies the pre-

condition, the component promises
to satisfy post-condition

client implementor

input
satisfies precondition

@ computation

satisfies postcondition
output

Specification: Meaning

* Pre-condition = Post-condition
(l.e., logical implication)

* |If the client satisfies the pre-
condition, the component promises
to satisfy post-condition

 But if the client violates the pre-
condition, the component can
behave in an arbitrary way!
 Logically, “false implies anything”
* Q. Why is this reasonable?

client implementor

input

violates precondition

‘ computation

behavior uncertain

output

Example: Specifying Array Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr[i] = val

* A specification of a “find” function

* By convention, we will label pre- & post-conditions as
requires and effects

* Meaning: If "val” occurs exactly once in “arr”, then it returns
index “I" such that arr[i] = val

- If “val” occurs zero times or more than once, then “find” may return
anything

Specification as an Implementation Set

« Specification defines a set of possible Implementations

» Glven a pre- & post-condition, any implementation that
fulfills the requirement “pre-condition = post-condition”
IS a valid implementation of the specification

Example: Implementing Array Find

static int find(int[] arr, int val) {
for (inti=0; i< arrlength; i++) {
if (arr[i] == val) return i;
}

return arr.length;

}

static int find(int[] arr, int val) {
for (inti=arrlength-1;i>=0;i--) {
if (arr[i] == val) return i;

} Q. Do these functions
return -1;

} behave the same or
differently?

Example: Specifying Array Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr[i] = val

A specification of the “find” function

* The two versions of “find” are both valid implementations
of this specification!
 As far as the client is concerned, they have the same behavior

* One could be substituted with the other, without affecting the
client’'s code

Specification Must Hide Unnecessary Details

 What can appear inside the pre- &
post-conditions?

« Recommended practice

* Pre-conditions should only mention
Input parameters of a function (Q.
Why not output?)

 Post-conditions should only mention implementation
the input & output parameters details

* They should avoid mentioning
hidden/private fields in the
component (Q. Why not?)

* |If necessary, instead refer to <
publicly visible fields/functions

client implementor

| —

local
variables

private
fields

Specification Must Hide Unnecessary Details

public class Account {
private String accountiD;
orivate int currBalance; // in cents

public void deposit(int dollars)
requires: nothing
effects: increase currBalance by (dollars)*100
{..// implementation }

}

* Q. What’s undesirable about this specification of “deposit”?
* Q. How would you improve this?

How do we design a “good” specification?

Factors In Designing Specifications

« Deterministic vs. under-determined
 Declarative vs. operational

« Strong vs. weak

» General vs. restrictive

Deterministic vs. Under-determined

A specification of a function is deterministic If, for any given
Input, it allows exactly one possible output.

* A specification is under-determined If, for some input, it allows
multiple possible outputs.

Recall: Specification of Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr[i] = val

« An example of a deterministic specification
« Only one return value Is possible for any given input

Recall: Specification of Find

static int find(int[] arr, int val) Spec verl
requires: val occurs exactly once in arr
effects: returns index i such that arr[i] = val

static int find(int[] arr, int val)
requires: val occurs in arr Spec ver2
effects: returns index i such that arr[i] = val

* Q. Is the second specification (ver2) deterministic or
under-determined? Why?

Recall: Implementations of Find

static int find(int[] arr, int val) {
for (inti=0; i< arrlength; i++) {
if (arr[i] == val) return i;

) These are both valid
return arr.length; Implementations of
} Spec verl & ver?2!

static int find(int[] arr, int val) {
for (inti=arrlength-1;i>=0;i--) {
if (arr[i] == val) return i;
}

return -1;

}

Deterministic vs. Under-determined

A specification of a function is deterministic if, for any given
Input, it allows exactly one possible output.

* A specification is under-determined If, for some input, it allows
multiple possible outputs.

* An under-determined specification is ambiguous and can result
iIn behaviors that are “surprising” to the client
* The client can’t rely on what output the function will return

* In general, deterministic specifications are preferrable

* Design consideration: For a given input, are multiple ouputs possible?
If so, how do | modify the pre- or post-condition to make it deterministic?

Declarative vs. Operational

* An operational specification describes how a function achieves
Its post-condition through a series of steps

» A declarative specification describes what a function achieves
without saying how

Declarative vs. Operational: Example

static int find(int[] arr, int val)
requires: val occurs in arr
effects: examines a[0],a[1],..., in turn and returns
the index of the 1%t element equal to val

* An example of an operational specification
* Q. What is undesirable about this specification?
« Expose details about how the function is implemented internally
* Unnecessarily constrains the set of possible implementations

Declarative vs. Operational: Example

static int find(int[] arr, int val))
o . Operational
requires: val occurs in arr

effects: examines a[0],a[1],..., in turn and returns
the index of the 1%t element equal to val

static int find(int[] arr, int val)
requires: val occurs in arr Declarative
effects: returns index i such that arr[i] = val

» Declarative specifications tend to:
* Be shorter, easier to understand
 Allow a larger set of implementations
* Give more flexibility to the implementor!

Declarative vs. Operational

* An operational specification describes how a function achieves
Its post-condition through a series of steps

A declarative specification describes what a function achieves
without saying how
* Operational specifications tend to:

* Expose details about how the function is implemented internally
* Unnecessarily constrains the set of possible implementations

» Declarative specifications are preferrable

* Design consideration: Is the specification describing “how” something is
done? If so, can we rewrite it to say only “what” it does?

Strong vs. Weak

* Let S1 and S2 be specifications with the same pre-condition

« S1 Is stronger than S2 if S1 provides more guarantees about
the output than S2 does

« (Mathematically, S1’s post-condition is logically stronger than S2’s
post-condition)

Strong vs. Weak: Example

static int find(int[] a, int val)
requires: val occurs at least once in a Spec verl
effects: returns index i such that aJi] = val

static int find(int[] a, int val) Spec ver2

requires: val occurs at least once in a
effects: returns lowest index i such that ali] = val

« Spec ver2 is stronger than verl, since it provides stronger
guarantees about the output

* How strong is “strong enough™?
* Depends on the client’s requirements
« To fulfill their own tasks, does the client rely on the index being the lowest?

Strong vs. Weak: Example #2

static int find(int[] a, int val)

requires: nothing Spec ver3
effects: returns index i such that aJi] = val

* Q. What is wrong with ver3?

* The specification is too strong. In fact, there is no possible valid
Implementation for this specification!

Strong vs. Weak: Example #2

static int find(int[] a, int val)
requires: nothing Spec ver3
effects: returns index i such that aJi] = val

static int find(int[] a, int val)

requires: nothing Spec ver4
effects: if val doesn’t occur in a, returns -1

else returns index i such that a[i] = val

« Specification should be as weak as possible

 Stronger specifications allow a smaller set of implementations & are
harder to implement

« Weaker specifications give more flexibility to the implementor

Strong vs. Weak

* Let S1 and S2 be specifications with the same pre-condition

« S1 Is stronger than S2 if S1 provides more guarantees about
the output than S2 does
« (Mathematically, S1’s post-condition is logically stronger than S2’s
post-condition)
A specification should be strong enough to support the needs of
the client

A specification should also be as weak as possible, to provide as
flexibility to the implementor

* Design consideration: Is the specification providing more guarantees
than needed? If so, how much can we relax them without breaking the
client’s code?

General vs. Restrictive

* Let S1 and S2 be specifications with the same post-condition

* S1is more general than S2 if S1 puts less restrictions on the
iInput than S2 does

* (Mathematically, S1’s pre-condition is logically weaker than S2’s pre-
condition)

General vs. Restrictive: Example

static int find(int[] a, int val)
requires: val occurs exactly once in a Spec verl
effects: returns index i such that aJi] = val

static int find(int[] a, int val)
requires: val occurs in a Spec ver2
effects: returns index i such that afi] = val

« Spec ver2 is more general than verl, since it accepts a larger
set of inputs

* In ver1, the client must ensure that “val” occurs exactly once; ver2
Imposes less burden on the client

General vs. Restrictive: Example #2

static int find(int[] a, int val)
requires: nothing
effects: if val doesn’t occur in a, returns -1
else returns index i such that ali] = val

» Spec ver3 is most general (for the given post-condition)
« Accepts any inputs; no burden on the client!

 But also shifts the burden onto the component to check input

« Sometimes, this is undesirable, due to complexity or performance issues (e.g.,
consider a very large input array)

 Arestriction of the pre-condition is sometimes necessary

General vs. Restrictive

* Let S1 and S2 be specifications with the same post-condition

* S1is more general than S2 if S1 puts less restrictions on the
iInput than S2 does
* (Mathematically, S1’s pre-condition is logically weaker than S2’s pre-

condition)
A specification should be as general as possible

A pre-condition places burden on the client to satisfy it
 Less restrictive it is, more applicable the function is

A specification should be restrictive when necessary

* Design consideration: What needs to be checked about the input? If
the check is too expensive, can we restrict the pre-condition to rule out

bad inputs?

Factors In Designing Specifications

« Deterministic vs. under-determined
 Declarative vs. operational

« Strong vs. weak

» General vs. restrictive

Exercise: Are these good specifications?

static Set union(Set s1, Set s2)
requires: “s1” and “s2” are non-empty
effects: returns a new set that contains the
elements from both “s1” and “s2”

static List sort(List I)
requires: nothing
effects: returns a new list that results from
applying merge sort to “I”

static String read(String filepath)
requires: filepath is not null
effects: opens the file at “filepath” and returns
the content of the file as a string

Interface Specifications: Takeaway

* A specification defines a contract between a component and
its clients

* A specification defines a set of valid possible implementations

A specifications should be deterministic rather than under-
determined

A specification should be declarative rather than operational

* A specification should be sufficiently strong, while being as
weak as possible

A specification should be as general as possible, while being
restrictive when necessary

Summary

* EXit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Leaning Goals
	Slide 4
	Slide 5: Specification
	Slide 6: Interface Specification
	Slide 7: Interface Specifications in Practice
	Slide 8: Interface Specifications in Practice
	Slide 9: Interface Specifications in Practice
	Slide 10: Specification: Elements
	Slide 11: Specification: Meaning
	Slide 12: Specification: Meaning
	Slide 13: Example: Specifying Array Find
	Slide 14: Specification as an Implementation Set
	Slide 15: Example: Implementing Array Find
	Slide 16: Example: Specifying Array Find
	Slide 17: Specification Must Hide Unnecessary Details
	Slide 18: Specification Must Hide Unnecessary Details
	Slide 19
	Slide 20: Factors in Designing Specifications
	Slide 21: Deterministic vs. Under-determined
	Slide 22: Recall: Specification of Find
	Slide 23: Recall: Specification of Find
	Slide 24: Recall: Implementations of Find
	Slide 25: Deterministic vs. Under-determined
	Slide 26: Declarative vs. Operational
	Slide 27: Declarative vs. Operational: Example
	Slide 28: Declarative vs. Operational: Example
	Slide 29: Declarative vs. Operational
	Slide 30: Strong vs. Weak
	Slide 31: Strong vs. Weak: Example
	Slide 32: Strong vs. Weak: Example #2
	Slide 33: Strong vs. Weak: Example #2
	Slide 34: Strong vs. Weak
	Slide 35: General vs. Restrictive
	Slide 36: General vs. Restrictive: Example
	Slide 37: General vs. Restrictive: Example #2
	Slide 38: General vs. Restrictive
	Slide 39: Factors in Designing Specifications
	Slide 40: Exercise: Are these good specifications?
	Slide 41: Interface Specifications: Takeaway
	Slide 42: Summary

