

17-423/723 Course Project
Spring 2025

Overview

The goal of this project is to help you gain hands-on experience applying design principles and
techniques from this class by designing, implementing, and iteratively improving a complex
software system. In particular, you will work in teams to design, implement, and deploy a
scheduling system for medical appointments, like those used by the public to schedule testing
and vaccine appointments during a pandemic.

Although scheduling might seem like an easy task, it has multiple layers of complexity that
makes it a challenging design problem. There are a number of different stakeholders (e.g.,
users/patients, pharmacies, hospitals, medical personnel, test/vaccine suppliers, policy makers)
with competing requirements and constraints. The requirements may evolve as new types of
testing/vaccine requirements arise or medical supplies fluctuate over time. During the pandemic,
within the US, there were ambitious plans for building a unified, nation-wide or state-wide
scheduling app, many of which ended up being far less than successful (ex1, ex2, ex3). These
systems were found to be difficult to use, unreliable, and slow to keep up with rapid changes in
vaccine supply/demands and policies. One of the main objectives of this project is to learn to
design systems to be ready for these types of changes and to be able to satisfy different types
of quality attributes that are critical for the success of the application.

Project Mechanics

Teamwork: You will work on this project in your assigned teams. As a team, you will use a
shared GitHub repository and a virtual machine to coordinate your work. Please establish a way
of communication and collaboration that works for your team -- for example, a Slack channel or
a Trello board. Please agree on how you take clear notes at meetings that include agreed tasks
and responsibilities. We do not expect that all team members contribute equally to each part of
the project, but we expect that all team members make every effort to be a good team citizen
(attend meetings, prepared and cooperative, respect for other team members, work on assigned
and agreed tasks by agreed deadlines, reaching out to team members when delays are
expected, etc).

Milestones: There will be in total six milestones throughout this project. In the first two
milestones, you will design, test, and implement an initial prototype with a basic level of
functionality involving appointment scheduling. Over the subsequent milestones, you will be
asked to re-design the system to handle additional layers of complexity through the introduction
of new features and quality attributes. In addition, some of the milestones will involve
cross-team interactions: You will be asked to build a service that will be used by other teams;
through this exercise, you will learn to develop services that are reusable and interoperable.
Finally, one of the milestones will be devoted to design review and critique, where you will be

https://www.technologyreview.com/2021/01/30/1017086/cdc-44-million-vaccine-data-vams-problems/
https://mspoweruser.com/microsoft-admits-falling-short-as-online-coronavirus-vaccine-scheduling-tools-fails-another-state/
https://www.virginiamercury.com/2021/03/10/virginia-could-abandon-vaccine-scheduling-software-amid-persistent-bugs/

asked to review and provide construction criticism of other teams’ designs.

Infrastructure: Each team will be provided with a virtual machine, where they will deploy their
system as a web app. For evaluating and testing your system throughout the milestones, the
course staff will attempt to interact with the deployed application by playing the role of various
types of users (e.g., a patient, an administrator, a doctor or healthcare personnel). In a later
milestone where you are asked to improve the robustness of the application, the course staff
may evaluate your application through stress testing or other form of systematic testing.

Languages, tools, frameworks: Your team is free to choose any programming language (e.g.,
Python, Javascript, C#,...) or technology stack (e.g., Django, Flask, Express,...) for any part of
this project. Each team will be assigned a virtual machine to deploy your system as a web
application. You will have root access to the virtual machine and are free to install any software
you deem suitable; but be responsible and careful as you also have the power to mis-configure
the machine to make it inaccessible. You also may use external data and services (e.g. cloud
services). For example, you can use free cloud credits that companies like Microsoft, Google,
and AWS provide to students. Whenever you set up tools or services, pay some attention to
configuring them with reasonable security measures; they may be vulnerable to indiscriminate
attacks on the web, which could result in loss of data or Internet access for your virtual machine.

Documents and reports: Throughout most of the milestones, your team will submit reports that
describe design alternatives that you considered, justification behind the final design decisions,
and any lessons learned (what worked well and what did not). Please note that there’s no one
“correct” or “best” way to design a system; our evaluation of your reports will be based on the
clarity and quality of your discussion of design alternatives, justification, and self-reflections.

Milestone 1: Domain Modeling and Initial System Design

Released: Wednesday, January 29, 2025
Due: Friday, Feb 7, 2025 11:59 pm (on Gradescope)

Learning Objectives

- Identify and specify the key entities in the problem domain and assumptions about them.
- Define a set of quality attribute scenarios that are relevant to the system.
- Apply design notations to specify and document a high-level design of the system.
- Consider alternatives for a set of design decisions and document justifications for final

decisions.

Milestone Tasks

In this milestone, your team will design an initial version of the scheduling application.

Task 1: Domain Modeling

Begin by understanding the problem domain and identifying the key entities and assumptions
(ASM) about their behaviors and properties. For this initial version of the application, focus on
requirements (REQ) that are related to the basic functionality of scheduling, viewing, and
modifying appointments. In particular, the user (i.e., a patient) should be able to use the
application to view a list of available appointments, select an appointment at their preference,
and be able to view an appointment(s) that they’ve previously made. In addition, the user should
be able to modify an existing appointment (e.g., change it to a different, available time slot) or
simply delete it.

Document the set of relevant domain entities and assumptions that you’ve identified using a
context model.

Tips: In a typical design process, understanding the problem domain and identifying
assumptions will involve talking to various stakeholders and domain experts. For this project,
we’ve deliberately selected a domain that most people in the class are likely to be familiar with
from their own personal experience using a similar type of application. There is no one “correct”
context model that we are expecting to see for this task, and any model with a reasonable set of
entities and assumptions will be acceptable. However, if you need further clarifications about the
problem domain, please feel free to contact the course staff.

Task 2: Quality Attributes

Describe the most important quality attribute scenarios (between 5 to 8 would be a reasonable
number) that you need to consider when designing the system and explain why they are

important. Furthermore, assign rough categories of priorities to each quality attribute scenario
(e.g., “high priority”, “medium priority”, or “low priority”) to indicate which quality attributes are
more important than others, and justify your prioritization.

Tips: Remember that quality attribute specifications should be measurable and associated with
a scenario. Also note that for the same type of quality attribute (e.g., performance), you can
specify multiple quality attribute scenarios (e.g., response time for one type of request and
response time for another type of request)

Scope: The list of quality attributes and their specification might change throughout the project
when you are learning more about the domain or new requirements. The quality attributes in this
milestone should demonstrate a good understanding of the domain and be relevant for the basic
functionality of appointment scheduling, but do not necessarily have to be “complete” or “final”.

Task 3. Component and Data Model Design

Once the domain model has been developed, develop a high-level design of the system,
including (1) the set of major components in your system and interfaces among those
components and with the domain entities and (2) a data model that captures different types of
information that your system will store.

As you discuss possible design solutions within your team, consider the following questions,
including:

● What are the major components in the system, and what are their responsibilities?
● How do the components communicate with each other? (e.g., HTTP, method calls)
● What does the interface for each component look like? What information does each

interface function take as input, and what does it return?
● Where is each component deployed? (e.g., on the user’s web browser, a server)
● What information about the domain entities does the system need to store?
● What are appropriate multiplicity constraints over those data types?
● What programming languages and web frameworks will be used?
● What is the expected sequence of interactions between the components and domain

entities in typical scenarios?
● How is the system designed to achieve the quality attributes identified in Task 2?

Document your design using (1) a component diagram and (2) a data model. In addition, for two
of the design questions listed above, (i) describe alternatives that you considered, (ii) your final
decision, and (iii) justification for your decision.

Scope. Since this is your team’s first design assignment, you will not be evaluated based on the
quality of your design (i.e., how well it achieves different types of quality attributes that we will
discuss throughout this class, such as modularity, reusability, interoperability, scalability,
robustness). For this milestone, a design that achieves the basic functional requirements of

appointment scheduling will be sufficient; you will be asked to iterate on and improve this design
in the future milestones.

Deliverables

Submit a report as a single PDF file to Gradescope that covers the following items in clearly
labeled sections (ideally, each section should start on a new page). Please correctly map the
pages in the PDF to the corresponding sections.

1. Domain model (2 pg max): A context model that includes the domain entities, along
with a list of system requirements (REQ) and assumptions about the behaviors or
properties of the entities (ASM).

2. Quality attribute specifications (2 pg max): A list of quality attribute scenarios, their
categories of prioritization, and justification for their prioritization.

3. Component design (2 pg max): (i) A component diagram that describes the set of
major components in the system, (ii) a description of the interfaces among those
components, and (iii) a description of the responsibilities of each component.

4. Data design (1 pg max): A data model that describes different types of information
stored in the system.

5. Design discussion (1 pg max): A discussion of two design questions, alternatives
considered, and justification for the final decisions.

Grading

This assignment is out of 120 points. For full points, we expect:

● A valid context model that includes a set of relevant domain entities and interactions
between them (10 pts), a list of requirements (10 pts), and a list of assumptions about
the entities (10 pts).

● At least 5 relevant quality attribute scenarios, specified in a unambiguous and
measurable way, with justified priorities (20 pts).

● A valid component model that contains a set of components and connections between
them (10 pts), a description of the interfaces between the components (10 pts), and a
description of the responsibilities of those components (10 pts).

● A valid data model that (1) contains information that is necessary for fulfilling system
requirements (10 pts) and (2) includes relations between data types and valid multiplicity
constraints over those relations (10 pts).

● A discussion of two design decisions. For each decision, (1) a description of at least two
alternatives considered (5 + 5 pts) and (2) a justification for the final decision (5 + 5 pts).

● Bonus social points (5 pts): See below.

Bonus social points (5 pts): Participate in an in-person social activity with your team that is not
related to any coursework. This could just be an informal happy hour, playing a board game or
computer game together, doing a puzzle or trivia quiz, watching a movie, or whatever you like,
as long as it is not course related. After you do, post a selfie to the public Slack channel #social

(including a photo of the team members) and tag all members who participated. To receive the
bonus points, please post the Slack message within 3 days after the milestone deadline.

