
Recitation Notes: 

GQM Activity 

1. Performance 
Goal: Ensure the system processes a high volume of payment transactions quickly and reliably. 
 

Question Metric 

Q1: How many transactions can the system 
handle per second without exceeding 
acceptable response times? 

- TPS under peak load 
 
- Average / 95th percentile / 99th percentile 
response time (ms) 

Q2: Does the system degrade gracefully 
under heavy load (spikes, seasonal peaks)? 

- Error rate (%) during peak load 
 
- Queue length / backlog size if using 
asynchronous queues 

Q3: How does latency vary across different 
geographies? 

- Response time by region (e.g., North 
America, Europe, Asia) 
 
-  Latency difference between regions 

 

2. Availability 
Goal: Maximize service uptime so that merchants and customers can process payments 
anytime. 
 

Question Metric 

Q1: How often is the system accessible to 
end users and merchants? 

- Uptime (%) over a defined period (e.g., 
monthly/quarterly) 
 
-  Number of downtime incidents  

Q2: How quickly does the system recover 
from unexpected failures (hardware, 
software)? 

- Mean Time to Restore (MTTR) 
 
-  Mean Time Between Failures (MTBF)  



Question Metric 

Q3: Do planned maintenance windows 
disrupt normal payment traffic? 

- Duration of scheduled maintenance 
 
-  Number of transactions affected  

 
 

3. Security 
Goal: Protect the payment platform and user data against unauthorized access, fraud, and data 
breaches. 
 

Question Metric 

Q1: How many security vulnerabilities or 
breach attempts are detected and mitigated? 

- Number of detected intrusion attempts 
per month 
 
-  Number of reported security vulnerabilities 
(internal or external)  

Q2: How frequently and quickly are known 
vulnerabilities patched? 

- Time to patch/remediate (days/hours) 
 
-  Number of unpatched critical vulnerabilities  

Q3: Is cardholder data or personally 
identifiable information (PII) secured 
adequately? 

- Compliance checks (PCI DSS, GDPR, 
etc.) 
 
-  Encryption coverage  (e.g., % of data 
encrypted at rest/in transit) 

Q4: How effective is the fraud detection 
mechanism? 

- False positive rate (legitimate transactions 
flagged) 
 
-  Chargeback ratio  (disputed transactions 
vs. total transactions) 

 
 



 

4. Scalability 
Goal: Allow the system to handle growth in number of users, transactions, and integration 
points without significant performance loss or prohibitive cost increases. 
 

Question Metric 

Q1: How does throughput (TPS) scale with 
additional compute resources (e.g., more 
servers, containers)? 

- Horizontal scalability ratio (TPS increase 
vs. server count) 
 
-  Resource utilization  (CPU, memory) under 
varying loads 

Q2: How does cost grow relative to 
transaction volume? 

- Cost per transaction (infrastructure + 
operational costs) 
 
-  Cost elasticity  (∆Cost ÷ ∆Load) 

Q3: Can new regions (data centers) be added 
to reduce latency? 

- Time to provision additional regions 
 
-  Latency reduction  observed after spinning 
up new region 

5. Maintainability 
Goal: Ensure the system can be easily updated, extended, and debugged with minimal 
disruption. 
 

Question Metric 

Q1: How long does it take to identify and fix 
bugs or issues in production? 

- Mean Time to Detect (MTTD) 
 
-  Mean Time to Resolve (MTTR)  for defects 

Q2: How quickly can new features or 
payment methods be rolled out? 

- Deployment frequency 
 
-  Lead time for changes  (from code commit 
to production) 

Q3: How modular is the codebase to support 
partial updates? 

- Cyclomatic complexity or other code 
metrics 



Question Metric 

 
-  Number of modules  with lines of code or a 
single monolith size 

Q4: How effective is the testing strategy to 
prevent regressions? 

- Automated test coverage (%) 
 
-  Number of critical defects found 
post-deployment  

 
 

6. Reliability 
Goal: Ensure the system consistently processes valid transactions and resists data corruption 
or inconsistent states. 
 

Question Metric 

Q1: How often do payment transactions fail 
due to internal errors? 

- Transaction success rate (%) 
 
-  Internal error rate  (# errors / total 
transactions) 

Q2: Do partial failures cause incorrect 
balances or lost transaction data? 

- Number of data inconsistency incidents 
 
-  Recovery time  for data reconciliation after 
partial failures 

Q3: Is the system resilient to hardware or 
network outages? 

- Fault tolerance tests (e.g., chaos 
engineering) pass/fail rate 
 
-  RPO/RTO  for critical transaction data 



 

QAS Activity 

1. Performance 
Scenario P1 
 

- Source: A large number of customers attempting to check out simultaneously 
- Stimulus: 10,000 transactions are initiated within a 1-minute window (peak holiday 

surge) 
- Artifact: Payment Processing Service, Database 
- Environment: Production environment, standard operations, external payment 

gateways active 
- Response: The system processes each transaction request and responds without timing 

out 
- Response Measure: 

- Average latency under 2 seconds per request 
- Error rate < 1% during the peak load 

 
Scenario P2 
 

- Source: Automated load testing tool 
- Stimulus: Sustained throughput of X transactions/second over 30 minutes 
- Artifact: Entire Payment Portal stack (web tier, application tier, DB tier) 
- Environment: Staging environment configured similarly to production 
- Response: System handles sustained load without performance degradation 
- Response Measure: 

- 95th percentile response time < 3 seconds 
- No critical performance alerts (CPU < 80%, memory < 75%) 

 
 

2. Availability 
Scenario A1 
 

- Source: Network failure in one data center 
- Stimulus: A major ISP outage causes the primary data center to lose connectivity 
- Artifact: Payment Processing Service, Merchant Portal 
- Environment: Production environment, peak business hours 
- Response: The system automatically fails over to a secondary data center 



- Response Measure: 
- Recovery Time Objective (RTO) ≤ 2 minutes 
- Number of lost or stalled transactions < 0.1% 

 
Scenario A2 
 

- Source: Infrastructure maintenance 
- Stimulus: Rolling server updates or patches are applied 
- Artifact: Merchant onboarding and user authentication services 
- Environment: Off-peak hours in production 
- Response: Zero downtime deployment ensures system remains accessible 
- Response Measure: 

- Uptime ≥ 99.9% during maintenance window 
- No user login failures or broken sessions 

 
 

3. Security 
Scenario S1 
 

- Source: Malicious actor or botnet 
- Stimulus: High-volume fraudulent transactions or brute-force attempts on login 

endpoints 
- Artifact: Authentication component, Fraud Detection service 
- Environment: Production environment under moderate load 
- Response: System detects unusual patterns, blocks suspicious IPs or accounts, and 

triggers alerts 
- Response Measure: 

- Percentage of fraud attempts blocked ≥ 95% 
- False-positive rate < 5% 
- Security alerts raised to on-call team within 1 minute of detection 

 
Scenario S2 
 

- Source: Quarterly PCI DSS compliance audit 
- Stimulus: Auditor requests evidence of data encryption and security posture 
- Artifact: Stored cardholder data, transaction logs 
- Environment: Normal production environment 
- Response: The system demonstrates compliance via encryption at rest and in transit, 

secure access controls 
- Response Measure: 

- Successful PCI DSS certification 
- Zero critical findings in the audit report 



 
 

4. Scalability 
Scenario SC1 
 

- Source: Marketing campaign causing a sudden influx of new merchants 
- Stimulus: 500 new merchants sign up each minute and start processing transactions 
- Artifact: Merchant Onboarding Service, Payment Processing, DB clusters 
- Environment: Production environment, standard usage patterns plus sudden spike 
- Response: Platform scales horizontally (more app server instances, DB shards) to 

handle increased load without performance loss 
- Response Measure: 

- Onboarding throughput: All 500 merchants successfully registered per minute 
- Provisioning time for new instances < 5 minutes 
- No increase in average transaction latency beyond 10% 

 
Scenario SC2 
 

- Source: Business decision to expand to multiple regions (e.g., EU, APAC) 
- Stimulus: Launch in a new region with local data center and currency support 
- Artifact: Global routing, replicated databases 
- Environment: Multiregional production environment 
- Response: New region becomes operational without major architectural rework; 

localized payment methods integrated 
- Response Measure: 

- Time to stand up new region < 2 weeks 
- New region latency < 250ms (95th percentile) for local users 

 
 

 

5. Maintainability 
Scenario M1 
 

- Source: Developer team merges new code for a subscription billing feature 
- Stimulus: Continuous integration system runs automated tests and code quality checks 
- Artifact: Code repository, build pipeline, deployment scripts 
- Environment: Test environment mimicking production configuration 
- Response: The system automatically builds, tests, and flags any regressions or 

integration conflicts 
- Response Measure: 



- Build success rate ≥ 95% 
- Time to detect and fix integration issues < 1 day 
- Test coverage for new feature > 80% 

 
Scenario M2 
 

- Source: Production incident requiring a hotfix 
- Stimulus: Bug reported in the payment authorization flow causing some transactions to 

be incorrectly flagged 
- Artifact: Payment microservice or monolithic payment module 
- Environment: Production with ongoing transactions 
- Response: A patch is developed, tested in staging, and deployed 
- Response Measure: 

- Mean Time to Recover (MTTR) from bug report to fix in production < 4 hours 
- No repeat failures after patch 

 
 

6. Reliability 
Scenario R1 
 

- Source: Partial component failure in the Payment Service’s primary database 
- Stimulus: A node in the database cluster crashes during peak usage 
- Artifact: Payment Service, transaction data layer 
- Environment: Production, normal transaction volume 
- Response: System re-routes queries to remaining nodes, local caching or replicas 

handle read/write continuity 
- Response Measure: 

- Zero lost transactions or data corruption 
- Automatic failover time ≤ 30 seconds 

 
Scenario R2 
 

- Source: Coding error introduced in a deployment 
- Stimulus: The error causes some transactions to be marked as “completed” before they 

are fully processed 
- Artifact: Transaction state machine, DB consistency 
- Environment: Production environment, moderate load 
- Response: The system detects data inconsistency and rolls back incorrect transactions 

or flags them for review 
- Response Measure: 

- Number of affected transactions < 0.01% 
- Time to reconcile: Data or transaction states rectified within 60 minutes 



 
 

 

 

Trade-off Activity 
 

Quality Attribute Monolith Architecture Microservices Architecture 

Performance - Pros: In-process 
communication can be faster 
(no network overhead 
between components). 
 
-  Cons : A single deployment 
can become a bottleneck 
under heavy load; 
performance issues in one 
module can affect the entire 
system. 

- Pros: Each service can be 
optimized for performance 
with the best-suited 
technology stack, and 
horizontally scaled as 
needed. 
 
-  Cons : Inter-service 
communication adds network 
overhead, which can 
introduce additional latency. 

Reliability - Pros: Simpler debugging 
since all components are in 
one place; fewer moving 
parts can mean fewer 
independent failure points. 
 
-  Cons : A single point of 
failure if the monolith 
crashes, it can bring down 
the entire system. 

- Pros: Fault isolation—a 
failure in one microservice 
does not necessarily crash 
the rest of the system. 
 
-  Cons : More complex 
failure modes introduced by 
distributed systems (e.g., 
partial failures, cascading 
failures). 

Scalability - Pros: Straightforward to 
scale by running multiple 
copies of the entire monolith 
(vertical scaling or “big box” 
servers). 
 

- Pros: Granular 
scaling—services can scale 
independently based on 
demand (e.g., Payment 
Service might need more 



-  Cons : You must scale 
everything together, even if 
only one module needs more 
capacity. Overprovisioning is 
common. 

instances, while Merchant 
Onboarding stays minimal). 
 
-  Cons : Operational 
overhead to manage and 
orchestrate multiple services. 

Availability - Pros: With proper 
replication/failover, a monolith 
can still achieve high 
availability. 
 
-  Cons : Downtime for one 
component typically means 
downtime for the entire 
application; rolling updates 
are trickier. 

- Pros: High availability can 
be improved by distributing 
services across multiple 
zones or regions; partial 
updates can be deployed 
independently. 
 
-  Cons : Requires more 
sophisticated DevOps for 
service discovery, load 
balancing, and failover. 

Security - Pros: Fewer network 
endpoints (everything is 
internal), potentially simpler 
to secure at the perimeter. 
 
-  Cons : Larger attack 
surface _within_ the 
codebase if cardholder data 
is spread throughout; entire 
codebase might be in PCI 
scope. 

- Pros: Can isolate sensitive 
components (e.g., Payment 
Service) in a restricted 
environment, reducing PCI 
scope. 
 
-  Cons : Many more network 
interfaces between 
microservices can increase 
the external “attack surface” if 
not carefully secured. 

Maintainability - Pros: Easier to start and 
understand (one repo, single 
deployment). 
 
-  Cons : As the codebase 
grows, modules become 
tightly coupled; changes can 
have wide-ranging impacts, 
slowing development. 

- Pros: Smaller, more 
focused codebases per 
service; teams can iterate 
independently and deploy 
more frequently. 
 
-  Cons : Complexities in 
versioning APIs, dealing with 
inter-service compatibility, 
and debugging distributed 
transactions. 
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