
Recitation Notes:

GQM Activity

1. Performance
Goal: Ensure the system processes a high volume of payment transactions quickly and reliably.

Question Metric

Q1: How many transactions can the system
handle per second without exceeding
acceptable response times?

- TPS under peak load

- Average / 95th percentile / 99th percentile
response time (ms)

Q2: Does the system degrade gracefully
under heavy load (spikes, seasonal peaks)?

- Error rate (%) during peak load

- Queue length / backlog size if using
asynchronous queues

Q3: How does latency vary across different
geographies?

- Response time by region (e.g., North
America, Europe, Asia)

- Latency difference between regions

2. Availability
Goal: Maximize service uptime so that merchants and customers can process payments
anytime.

Question Metric

Q1: How often is the system accessible to
end users and merchants?

- Uptime (%) over a defined period (e.g.,
monthly/quarterly)

- Number of downtime incidents

Q2: How quickly does the system recover
from unexpected failures (hardware,
software)?

- Mean Time to Restore (MTTR)

- Mean Time Between Failures (MTBF)

Question Metric

Q3: Do planned maintenance windows
disrupt normal payment traffic?

- Duration of scheduled maintenance

- Number of transactions affected

3. Security
Goal: Protect the payment platform and user data against unauthorized access, fraud, and data
breaches.

Question Metric

Q1: How many security vulnerabilities or
breach attempts are detected and mitigated?

- Number of detected intrusion attempts
per month

- Number of reported security vulnerabilities
(internal or external)

Q2: How frequently and quickly are known
vulnerabilities patched?

- Time to patch/remediate (days/hours)

- Number of unpatched critical vulnerabilities

Q3: Is cardholder data or personally
identifiable information (PII) secured
adequately?

- Compliance checks (PCI DSS, GDPR,
etc.)

- Encryption coverage (e.g., % of data
encrypted at rest/in transit)

Q4: How effective is the fraud detection
mechanism?

- False positive rate (legitimate transactions
flagged)

- Chargeback ratio (disputed transactions
vs. total transactions)

4. Scalability
Goal: Allow the system to handle growth in number of users, transactions, and integration
points without significant performance loss or prohibitive cost increases.

Question Metric

Q1: How does throughput (TPS) scale with
additional compute resources (e.g., more
servers, containers)?

- Horizontal scalability ratio (TPS increase
vs. server count)

- Resource utilization (CPU, memory) under
varying loads

Q2: How does cost grow relative to
transaction volume?

- Cost per transaction (infrastructure +
operational costs)

- Cost elasticity (∆Cost ÷ ∆Load)

Q3: Can new regions (data centers) be added
to reduce latency?

- Time to provision additional regions

- Latency reduction observed after spinning
up new region

5. Maintainability
Goal: Ensure the system can be easily updated, extended, and debugged with minimal
disruption.

Question Metric

Q1: How long does it take to identify and fix
bugs or issues in production?

- Mean Time to Detect (MTTD)

- Mean Time to Resolve (MTTR) for defects

Q2: How quickly can new features or
payment methods be rolled out?

- Deployment frequency

- Lead time for changes (from code commit
to production)

Q3: How modular is the codebase to support
partial updates?

- Cyclomatic complexity or other code
metrics

Question Metric

- Number of modules with lines of code or a
single monolith size

Q4: How effective is the testing strategy to
prevent regressions?

- Automated test coverage (%)

- Number of critical defects found
post-deployment

6. Reliability
Goal: Ensure the system consistently processes valid transactions and resists data corruption
or inconsistent states.

Question Metric

Q1: How often do payment transactions fail
due to internal errors?

- Transaction success rate (%)

- Internal error rate (# errors / total
transactions)

Q2: Do partial failures cause incorrect
balances or lost transaction data?

- Number of data inconsistency incidents

- Recovery time for data reconciliation after
partial failures

Q3: Is the system resilient to hardware or
network outages?

- Fault tolerance tests (e.g., chaos
engineering) pass/fail rate

- RPO/RTO for critical transaction data

QAS Activity

1. Performance
Scenario P1

- Source: A large number of customers attempting to check out simultaneously
- Stimulus: 10,000 transactions are initiated within a 1-minute window (peak holiday

surge)
- Artifact: Payment Processing Service, Database
- Environment: Production environment, standard operations, external payment

gateways active
- Response: The system processes each transaction request and responds without timing

out
- Response Measure:

- Average latency under 2 seconds per request
- Error rate < 1% during the peak load

Scenario P2

- Source: Automated load testing tool
- Stimulus: Sustained throughput of X transactions/second over 30 minutes
- Artifact: Entire Payment Portal stack (web tier, application tier, DB tier)
- Environment: Staging environment configured similarly to production
- Response: System handles sustained load without performance degradation
- Response Measure:

- 95th percentile response time < 3 seconds
- No critical performance alerts (CPU < 80%, memory < 75%)

2. Availability
Scenario A1

- Source: Network failure in one data center
- Stimulus: A major ISP outage causes the primary data center to lose connectivity
- Artifact: Payment Processing Service, Merchant Portal
- Environment: Production environment, peak business hours
- Response: The system automatically fails over to a secondary data center

- Response Measure:
- Recovery Time Objective (RTO) ≤ 2 minutes
- Number of lost or stalled transactions < 0.1%

Scenario A2

- Source: Infrastructure maintenance
- Stimulus: Rolling server updates or patches are applied
- Artifact: Merchant onboarding and user authentication services
- Environment: Off-peak hours in production
- Response: Zero downtime deployment ensures system remains accessible
- Response Measure:

- Uptime ≥ 99.9% during maintenance window
- No user login failures or broken sessions

3. Security
Scenario S1

- Source: Malicious actor or botnet
- Stimulus: High-volume fraudulent transactions or brute-force attempts on login

endpoints
- Artifact: Authentication component, Fraud Detection service
- Environment: Production environment under moderate load
- Response: System detects unusual patterns, blocks suspicious IPs or accounts, and

triggers alerts
- Response Measure:

- Percentage of fraud attempts blocked ≥ 95%
- False-positive rate < 5%
- Security alerts raised to on-call team within 1 minute of detection

Scenario S2

- Source: Quarterly PCI DSS compliance audit
- Stimulus: Auditor requests evidence of data encryption and security posture
- Artifact: Stored cardholder data, transaction logs
- Environment: Normal production environment
- Response: The system demonstrates compliance via encryption at rest and in transit,

secure access controls
- Response Measure:

- Successful PCI DSS certification
- Zero critical findings in the audit report

4. Scalability
Scenario SC1

- Source: Marketing campaign causing a sudden influx of new merchants
- Stimulus: 500 new merchants sign up each minute and start processing transactions
- Artifact: Merchant Onboarding Service, Payment Processing, DB clusters
- Environment: Production environment, standard usage patterns plus sudden spike
- Response: Platform scales horizontally (more app server instances, DB shards) to

handle increased load without performance loss
- Response Measure:

- Onboarding throughput: All 500 merchants successfully registered per minute
- Provisioning time for new instances < 5 minutes
- No increase in average transaction latency beyond 10%

Scenario SC2

- Source: Business decision to expand to multiple regions (e.g., EU, APAC)
- Stimulus: Launch in a new region with local data center and currency support
- Artifact: Global routing, replicated databases
- Environment: Multiregional production environment
- Response: New region becomes operational without major architectural rework;

localized payment methods integrated
- Response Measure:

- Time to stand up new region < 2 weeks
- New region latency < 250ms (95th percentile) for local users

5. Maintainability
Scenario M1

- Source: Developer team merges new code for a subscription billing feature
- Stimulus: Continuous integration system runs automated tests and code quality checks
- Artifact: Code repository, build pipeline, deployment scripts
- Environment: Test environment mimicking production configuration
- Response: The system automatically builds, tests, and flags any regressions or

integration conflicts
- Response Measure:

- Build success rate ≥ 95%
- Time to detect and fix integration issues < 1 day
- Test coverage for new feature > 80%

Scenario M2

- Source: Production incident requiring a hotfix
- Stimulus: Bug reported in the payment authorization flow causing some transactions to

be incorrectly flagged
- Artifact: Payment microservice or monolithic payment module
- Environment: Production with ongoing transactions
- Response: A patch is developed, tested in staging, and deployed
- Response Measure:

- Mean Time to Recover (MTTR) from bug report to fix in production < 4 hours
- No repeat failures after patch

6. Reliability
Scenario R1

- Source: Partial component failure in the Payment Service’s primary database
- Stimulus: A node in the database cluster crashes during peak usage
- Artifact: Payment Service, transaction data layer
- Environment: Production, normal transaction volume
- Response: System re-routes queries to remaining nodes, local caching or replicas

handle read/write continuity
- Response Measure:

- Zero lost transactions or data corruption
- Automatic failover time ≤ 30 seconds

Scenario R2

- Source: Coding error introduced in a deployment
- Stimulus: The error causes some transactions to be marked as “completed” before they

are fully processed
- Artifact: Transaction state machine, DB consistency
- Environment: Production environment, moderate load
- Response: The system detects data inconsistency and rolls back incorrect transactions

or flags them for review
- Response Measure:

- Number of affected transactions < 0.01%
- Time to reconcile: Data or transaction states rectified within 60 minutes

Trade-off Activity

Quality Attribute Monolith Architecture Microservices Architecture

Performance - Pros: In-process
communication can be faster
(no network overhead
between components).

- Cons : A single deployment
can become a bottleneck
under heavy load;
performance issues in one
module can affect the entire
system.

- Pros: Each service can be
optimized for performance
with the best-suited
technology stack, and
horizontally scaled as
needed.

- Cons : Inter-service
communication adds network
overhead, which can
introduce additional latency.

Reliability - Pros: Simpler debugging
since all components are in
one place; fewer moving
parts can mean fewer
independent failure points.

- Cons : A single point of
failure if the monolith
crashes, it can bring down
the entire system.

- Pros: Fault isolation—a
failure in one microservice
does not necessarily crash
the rest of the system.

- Cons : More complex
failure modes introduced by
distributed systems (e.g.,
partial failures, cascading
failures).

Scalability - Pros: Straightforward to
scale by running multiple
copies of the entire monolith
(vertical scaling or “big box”
servers).

- Pros: Granular
scaling—services can scale
independently based on
demand (e.g., Payment
Service might need more

- Cons : You must scale
everything together, even if
only one module needs more
capacity. Overprovisioning is
common.

instances, while Merchant
Onboarding stays minimal).

- Cons : Operational
overhead to manage and
orchestrate multiple services.

Availability - Pros: With proper
replication/failover, a monolith
can still achieve high
availability.

- Cons : Downtime for one
component typically means
downtime for the entire
application; rolling updates
are trickier.

- Pros: High availability can
be improved by distributing
services across multiple
zones or regions; partial
updates can be deployed
independently.

- Cons : Requires more
sophisticated DevOps for
service discovery, load
balancing, and failover.

Security - Pros: Fewer network
endpoints (everything is
internal), potentially simpler
to secure at the perimeter.

- Cons : Larger attack
surface _within_ the
codebase if cardholder data
is spread throughout; entire
codebase might be in PCI
scope.

- Pros: Can isolate sensitive
components (e.g., Payment
Service) in a restricted
environment, reducing PCI
scope.

- Cons : Many more network
interfaces between
microservices can increase
the external “attack surface” if
not carefully secured.

Maintainability - Pros: Easier to start and
understand (one repo, single
deployment).

- Cons : As the codebase
grows, modules become
tightly coupled; changes can
have wide-ranging impacts,
slowing development.

- Pros: Smaller, more
focused codebases per
service; teams can iterate
independently and deploy
more frequently.

- Cons : Complexities in
versioning APIs, dealing with
inter-service compatibility,
and debugging distributed
transactions.

	GQM Activity
	1. Performance
	2. Availability
	3. Security
	
	4. Scalability
	5. Maintainability
	6. Reliability

	
	QAS Activity
	1. Performance
	2. Availability
	3. Security
	4. Scalability
	5. Maintainability
	6. Reliability

	
	
	Trade-off Activity

