
46	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

FOCUS: PROFESSIONAL SOFTWARE DESIGN

A CENTRAL TASK in design is choos-
ing what artifact will best satisfy the
client’s needs, whether that will require
creating an artifact or choosing from
existing alternatives. A design space
identifies and organizes the decisions
to be made, together with the alterna-
tives for those decisions, thereby pro-
viding guidance for creating artifacts or
a framework for comparing them.

Here, I discuss design spaces and
present an example design space for a
traffic signal simulation task. I show
how this space enables comparison of
the designs, and discuss the benefits of
explicitly considering the design space
during design—and the risks of failing
to do so.

Design Spaces
The design space for a problem is the
set of decisions to be made about the

designed artifact together with the al-
ternative choices for these decisions. A
representation of a design space is one
of the static textual or graphical forms
in which a particular design space—or a
subset of that space—may be rendered.

Intuitively, a design space is a discrete
Cartesian space in which design decisions
are the dimensions, possible alternatives
are values on those dimensions, and com-
plete designs are points in the space.

In this view, the design space is con-
crete. This contrasts with a common
usage in which “design space” loosely
refers to domain knowledge about the
problem or even to all of a design ac-
tivity’s decisions, whether they regard
problem analysis, the designed artifact,
or the process of producing the design.

In practice, most interesting design
spaces are too rich to represent in their
entirety, so design space representations

feature dimensions corresponding to
the properties of principal interest. De-
sign dimensions aren’t independent, so
choosing an alternative for one decision
might preclude alternatives for other
decisions or make them irrelevant. For
example, if displaying a value is op-
tional, then decisions about the display
format are irrelevant if the value isn’t
displayed. If a graph displays multiple
values, all should use the same units.
So, representing portions of the design
space as trees is convenient, despite the
disadvantage of implying an order in
which to make decisions.

A design space’s representation for a
particular task is usually a slice of the
complete design space that captures the
important properties the artifact must
have. By organizing design decisions,
a design space helps designers consider
relevant alternatives systematically. It
also provides a way to compare similar
products by highlighting differences be-
tween designs and allowing systematic
matching to the needs of the problem at
hand. Naturally, a good representation
for a particular problem should reflect
the solution’s desired properties.

Design spaces can inoculate design-
ers against the temptation to use the
first alternative that comes to mind. For
example, in studying software architec-
tures, I repeatedly observed developers’
tendency to use a familiar system struc-
ture instead of analyzing the problem
to select an appropriate structure. Evi-
dently, they were often oblivious even
to the existence of alternatives; that is,
they were defaulting to familiar struc-
tures instead of designing suitable ones.

Since at least 1971,1 computer sci-
ence has used design spaces to organize
knowledge about families of designs or
systems to describe

•	 computer architecture,1,2

•	 user input devices,3

The Role
of Design Spaces
Mary Shaw, Carnegie Mellon University

// A case study involving a traffic signal simulator

illustrates the benefits of considering the design space

during design and the risks of failing to do so. //

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29,2021 at 20:41:06 UTC from IEEE Xplore. Restrictions apply.

	 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE � 47

•	 user interface implementation struc-
tures,4

•	 software architectural styles,5

•	 distributed sensors,6 and
•	 typeface design.7

Design studies use the exploration of
design spaces to find suitable designs,
often by searching, as a model of de-
signer action.8

Often—and in most practical prob-
lems of realistic size—the design space
is not completely known in advance. In
this case, the elaboration of the space
proceeds hand-in-hand with the de-
sign process. Herbert Simon treated
the task of selection from a fixed space
as enumeration and optimization, and
the task of searching an unknown or
open-ended space as search and sat-
isficing.9 These cases align (roughly)
with routine and innovative design.

Representing
Design Spaces
Figure 1 shows a small design space for
sharing information via the Web. This
is only a small slice of the entire design
space, selected to compare representa-
tions of the same space. For this small
example, each of the three dimensions
has two possible values:

•	 Activation. Does the sender
push the information to the
reader, or does the reader pull the
communication?

•	 Privacy. Is the communication pri-
vate to a small set of known parties,
or is it public?

•	 Authorship. Does one person or
an open-ended group author the
information?

Figure 1 shows examples at ev-
ery point of the space. For instance, a
sender pushes email to the reader’s mail-
box, the sender writes it, and it’s private

to the sender and
named recipients.
Of course, more
than one applica-
tion can occupy a
point in this space.
For example, in-
stant messaging
also lies at the
<sender push, pri-
vate, solo> point.
Some points might
also be unoccu-
pied. This might
happen because
the combinations
of choices don’t
make sense, or it
might indicate an
opportunity for new products.

Sketching multidimensional spaces
obviously doesn’t scale well. This small
design space admits other representa-
tions. For example, in Table 1, rows
correspond to points in the space, and
columns correspond to the dimensions.
This table’s shortcoming is that it repre-
sents the points on each dimension only
implicitly, in the values in the table’s
body. This format can represent the
design space only to the extent that it’s
populated with a full range of examples.

You can also represent this design
space by focusing on dimensions and
their values. Figure 2 shows one such
form. Following Frederick Brooks, the
tree has two kinds of branches: choice
and substructure.10 Choice branches,
flagged with “##,” are the actual design
decisions; usually one option should
be chosen. Substructure branches (not
flagged) group independent decisions
about the design; usually all of these
should be explored.

Figure 2 has only one hierarchi-
cal level, but the format allows deeper
structure; indeed, the traffic signal
simulation space we’ll look at is much

richer. This representation’s advantages
are that it shows alternatives without
relying on examples (Figure 2 adds two
alternatives—interactive and login con-
trolled) and it handles hierarchical de-
scriptions well. Its disadvantage is that
it represents a point in the space dif-
fusely by tagging all relevant values.
The figure illustrates this by placing the
email, wiki, and (static) webpage in-
stances in the representation.

Naturally, if other properties domi-
nate design concerns, a different de-
sign space would be appropriate. The
example I just discussed addresses how
information flows between users. If
the properties of interest are related to
content representation and storage, the
dimensions of interest might be <per-
sistence, locus of state, latency, content
type>.

The Traffic Signal
Simulation Design Space
To relate design spaces more closely
to practice, I turn to a problem of a
more realistic size, drawn from the US
National Science Foundation-spon-
sored Studying Professional Software

Webpage Wiki

Twitter

Facebook wall
with comments

Yahoo group
as email

email
d-listemail

Solo Shared

Facebook
status

Reader pull

Sender push

Ac
tiv

at
io

n
AuthorshipPriv

ac
y

Priv
ate

Pub
lic

FIGURE 1. A small design space for Web information sharing. This

representation selects three decisions about information sharing and

shows how they correspond to some common applications.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29,2021 at 20:41:06 UTC from IEEE Xplore. Restrictions apply.

48	 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: PROFESSIONAL SOFTWARE DESIGN

Design workshop (www.ics.uci.edu/
design-workshop). In preparation for
this workshop, organizers videotaped
three two-person teams as they worked
for one to two hours on a design prob-
lem. A multidisciplinary group of de-
sign researchers analyzed the sessions’
tapes and transcripts, then discussed
the sessions at the NSF workshop. The
design task was a simulator for traffic
flow in a street network, whose pur-
pose was to help civil engineering stu-
dents appreciate the subtlety of traffic-
light timing. The full text of the task
statement (the prompt) is at www.ics.
uci.edu/design-workshop/files/UCI_
Design_Workshop_Prompt.pdf and in
the introduction to a special issue of
Design Studies that reports some of
the results.11

Figure 3 presents a representation
of the design space implicit in the tran-
scripts. None of the teams explicitly
considered a design space, so to de-
velop Figure 3, I studied the videos and
transcripts and identified the principal
conceptual entities the teams included
in their designs along with any alterna-
tives they considered. Trying to remain
faithful to the structure that emerged
from the design discussions, I identified
seven principal dimensions to organize
the alternatives and annotated them

with details from the discussions. The
dimensions are

•	 System Concept,
•	 Road System,
•	 Traffic Signals,
•	 Traffic Model,
•	 Simulator,
•	 Model of Time, and
•	 User Interface.

The elaboration of each of these dimen-
sions is hierarchical. In Figure 3, AD,
IN, and MB indicate the three teams’
decisions.

I also reviewed the prompt, noting
choices that the prompt itself implied.
In some cases, I added obvious alterna-
tives that did not otherwise appear in
the transcripts. The prompt clearly im-
plies certain design decisions, but the
team choices were often strikingly dif-
ferent from those decisions and from
other teams’ decisions. For example, the
prompt says, “Students must be able
to describe the behavior of the traf-
fic lights at each of the intersections,”
which quite clearly indicates that stu-
dents should set and vary the signals’
timing. Finally, I examined the demon-
stration version of Trafficware (www.
trafficware.com), a commercial traffic
simulation tool. This professional tool

has obviously received more design and
development effort than the workshop
exercise. Nevertheless, it’s informative
to see where it lies in the design space.
In Figure 3, the bold red boxed text
flags the prompt’s implications while
highlighted backgrounds indicate Traf-
ficware’s decisions.

The resulting representation of the
design space is incomplete in two im-
portant ways. First, the alternatives
don’t exhaust the possibilities. Indeed,
Trafficware presents many more pos-
sibilities. Second, this representation
captures only the larger-grained and
(apparently) most significant design de-
cisions. Omitted, for example, are the
characterization of traffic entering and
leaving at the map edges, the handling
of left turns, and analytics. Neverthe-
less, Figure 3’s representation provides
a uniform framework for comparing
the designs the workshop studied.

Through a Design
Space Lens
Figure 3 provides a basis for comparing
the three teams’ diverse approaches and
reflecting on ways that explicit consid-
eration of the design space might have

Activation

| ## sender push [email]

| ## reader pull [wiki][web]

| ## interactive

Privacy

| ## private [email]

| ## login controlled

| ## public [wiki][web]

Authorship (edit or append rights)

| ## solo [email][web]

| ## shared [wiki]

FIGURE 2. A dimension-oriented

representation of the design space in Figure

1. A hierarchical representation of the design

space of Figure 1 scales better to more

dimensions.

TA
B

L
E

 1 An instance-oriented representation of the design space
in Figure 1. This alternative representation is organized

around the points in the design space.

Instance Activation Privacy Authorship

Webpage Reader pull Public Solo

Wiki Reader pull Public Shared

Facebook status Reader pull Private Solo

Facebook wall with comments Reader pull Private Shared

Twitter Sender push Public Solo

Yahoo group as email Sender push Public Shared

Email Sender push Private Solo

Email d-list Sender push Private Shared

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29,2021 at 20:41:06 UTC from IEEE Xplore. Restrictions apply.

 JANUARY/FEBRUARY 2012 | IEEE SOFTWARE 49

helped them. I’ll concentrate on archi-
tectural decisions, which fall chiefl y un-
der the System Concept and Simulator
dimensions.

System Concept corresponds to the
choice of the overall system architec-
ture and thereby provides the structure
for the rest of the design. (By “architec-
ture,” I mean the high-level concepts
that guide system organization, not
the selection of data structures or the
class structure of an object-oriented
system. Thus, “we’ll use MVC [model-
view-controller]” is architectural, but
“a road is a queue” isn’t.) Perhaps be-
cause of the workshop’s short time
frame, the teams spent little time ex-
plicitly discussing overall organiza-
tion. Each picked a different system
concept. In each case, the team identi-
fi ed the top-level organization almost
automatically, without considering and
evaluating alternatives. It appears from
the transcripts that the teams chose the
overall system concept implicitly, more
as a default than a deliberate decision.

Team AD couched their discussion
in terms of objects. They fi rst selected
data structures for intersections, roads,
and the “cop,” which was the main ob-
ject to advance the state of the system
via timer events. A high-level network
object let users add roads, and the sim-
ulation would infer the intersections.
The team mentioned the MVC pattern,
but instead of using it to organize the
design activity, they periodically tried
to decide whether some entity (the cop
or the clock) was a model or controller.

Team IN saw a data-driven problem
in the prompt, so they focused on data
items. Although they also mentioned
MVC, they centered the design on a
main map, to which the user added
intersections connected to roads. The
main map was the overall controller;
intersections were also active objects
that query roads for traffi c and enforce
safety rules on lights.

Team MB focused on the problem’s
visual aspects and considered things

the students must do: build the map,
create traffi c patterns, set signal tim-
ings, run the simulation, and so on.
They organized the design around a
drawing tool to support these activities,

and simulation was one of the invok-
able actions.

Both AD and IN used MVC infor-
mally. In classic MVC, the controller
is chiefl y a dynamic mediator between

System Concept
| ##MVC AD
| ##Code + User interface IN
| ## User Interface MB
| ## Simulator

Road System
| High-level organization
| | ## Intersections AD
| | ## Roads
| | ## Network AD IN
| Intersections
| | ## Collection of signals IN
| | ## Signals and sensors in approaches MB
| | ## Have roads (with lights and cars) AD
| Roads
| | Lanes
| | ## No lanes
| | ## Lanes, with signal per lane AD IN
| | Throughput
| | Capacity AD
| | Latency IN MB
| Connection of roads to intersections
| | ## Intersections have queues (roads) AD
| | ## Lights and sensors in approaches MB
| | ## Unspeci�ed or unclear IN
| | ## Simulator handles interaction

Traf�c Signals
| Place in hierarchy
| | ## Belong to roads AD
| | ## Belong to intersections IN
| | ## Belong to approaches,
 which connect roads to ints MB
| Safety
| | ## Independent lights with safety checks
| | | ##Controller checks dynamically AD IN
| | | ## UI checks at de�nition time MB
| | ## One set per intersection, selected from safe set
| Relations among intersections
| | ## Independent AD
| | ## Synchronized IN MB
| Setting timing
| | ## System sets timing AD IN MB
| | ## Students set timing MB
| Sensors
| | ## Immediately advance on arrival IN
| | ## Wait to synchronize

Traf�c Model
| ## Master traf�c object, discrete cars MB
| ## Discrete cars
| | ## Cars with state, route, destination MB
| | ## Random choices at intersections AD IN MB
| ## Distributions only

Simulator
| ## MVC
| ## Set of objects
| | ## executing in parallel threads IN MB
| | ## traversed by a controller
 at each clock tick AD
| ## Separate model and simulation engine

Model of Time
| ## Uniform time ticks AD
| ## Scheduled event queue
| ## Parallel threads IN

User Interface
| Display
| | Layout of visual map
| | ## student’s own choosing
| | ## intersections implied by
 road crossings AD MB
| | Relation of layout distances to road length
| | ## layout determines road length MB
| | ## layout determines length,
 constrained to grid AD
| | ## length independent of layout
| | De�ning the map
| | ##click-drag-drop visual editing AD IN MB
| | Setting light timing
| | ## double-click on intersection AD MB
| | De�ning traf�c model
| | ## set traf�c loads only at edges AD IN MB
| | ## allow traf�c to enter internally
| | Viewing results
| | ## see individual cars, lights MB
| | ## see view of density on roads MB
| | ## see cars and aggregate statistics
| | ## see aggregate statistics only
| | Saving and restoring
| | ## supported MB
| | ## not supported AD

FIGURE 3. A composite representation of several designs in the traffi c signal simulation

design space, showing the decisions implied by the task statement (boxed red text), made by

the three teams (AD, IN, and MB), and made by a commercial product (highlighted in yellow).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29,2021 at 20:41:06 UTC from IEEE Xplore. Restrictions apply.

50 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

FOCUS: PROFESSIONAL SOFTWARE DESIGN

the user’s actions (through the view
of the user interface) and the domain
logic that is captured in the model. All
three designs, especially AD, assigned
the controller the details of running
the simulation. When the simulation is
running, however, the user isn’t offer-
ing input to the system. So, incorporat-
ing the simulation logic in the control-
ler might make sense for the common
informal meaning of “controller,” but
it’s not a good match for the MVC pat-
tern’s controller.

Figure 3’s framework helps identify
the differences among the system con-
cepts and simulation mechanisms in
these three designs. It also highlights
the core task set by the fi rst sentence of
the prompt—“designing a traffi c fl ow
simulation program”—and the later
charge to “focus on the important de-
sign decisions that form the foundation
of the implementation.”

A simulator is a well-known type
of software system with a history that
goes back many decades. Identifying a
system as a simulator leads to recog-
nizing—and separating in the design—
four concerns:

•	 the model of the phenomenon to
simulate,

•	 the means of setting up a specifi c
case to simulate,

•	 the simulation engine itself, and
•	 a simulation’s current state (includ-

ing a way to report results).

MB focused on the problem’s simu-
lation aspect, although they didn’t say
much about the simulation engine.

Recognizing the conventional simula-
tor structure might have helped AD
separate “control”—that is, running a
simulation on a specifi c case—from the
MVC controller (which would mediate
between the user interface and the data
the students defi ned). Viewing the sys-
tem as a simulator might have led AD
and IN to consider alternatives to mas-
sively parallel execution of objects. It
would have almost certainly helped MB
separate the user interface featuring a
drawing tool from the model that the
drawing tool was to create.

O rganizing design knowledge
as a design space provides a
framework for systematically

considering design alternatives, for recog-
nizing interactions and trade-offs among
decisions, and for comparing designs.

Had a design space been available
for the traffi c signal simulation task,
it would have provided a checklist of
questions to consider along with possi-
ble alternatives. Even if the design space
hadn’t been available at the outset, the
discipline of creating a partial represen-
tation would have sensitized the design-
ers to the existence of alternatives and
helped organize the design discussion.

Indeed, incorporating design spaces
into normal practice would lead design-
ers to ask whether a design space had
already been developed for this or a
similar problem. This would help avoid
problem analysis from scratch and help
designers exploit domain expertise en-
coded in the design space.

A suitable representation of a design

space also supports comparison of
designs—in particular, the selection
of an appropriate solution from a set
of existing alternatives that have been
identifi ed with points in the space. If
the requirement is mapped to one or
more points in the space, the solutions
at nearby points in the space should be
favored candidates.

Acknowledgments
US National Science Foundation grant CCF-
0845840 partially supported the Studying
Professional Software Design workshop. The
workshop wouldn’t have been possible with-
out the professional designers’ willingness to
work on the design task and to allow review
of that work.

References
 1. C.G. Bell and A. Newell, Computer Struc-

tures: Readings and Examples, McGraw-Hill,
1971.

 2. D. Sima, “The Design Space of Register Re-
naming Techniques,” IEEE Micro, vol. 20, no.
5, 2000, pp. 70–83; doi:10.1109/40.877952.

 3. S.K. Card, J.D. Mackinlay, and G.G. Rob-
ertson, “A Morphological Analysis of the
Design Space of Input Devices,” ACM Trans.
Information Systems, vol. 9, no. 2, 1991, pp.
99–122.

 4. T.G. Lane, User Interface Software Structures,
doctoral dissertation, School of Computer
Science, Carnegie Mellon Univ., 1990.

 5. M. Shaw and P. Clements, “A Field Guide to
Boxology: Preliminary Classifi cation of Archi-
tectural Styles for Software Systems,” Proc.
21st Int’l Computer Software and Applica-
tions Conf., IEEE CS Press, 1997, pp. 6–13.

 6. K. Römer and F Mattern, “The Design Space
of Wireless Sensor Networks,” IEEE Wireless
Comm., vol. 11, no. 6, 2004, pp. 54–61.

 7. “The Design Space,” TypEdu; www.typedu.
org/dynamic/lessons/article/designspace.

 8. R.F. Woodbury and A.L. Burrow, “Whither
Design Space?” Artifi cial Intelligence for Eng.
Design, Analysis, and Manufacturing, vol. 20,
no. 2, 2006, pp. 63–82.

 9. H.A. Simon, Sciences of the Artifi cial, MIT
Press, 1996, ch. 5.

 10. F.P. Brooks Jr., The Design of Design: Essays
from a Computer Scientist, Addison-Wesley,
2010.

 11. M. Petre, A. van der Hoek, and A. Baker,
“Editorial,” Design Studies, vol. 31, no. 6,
2010, pp. 533–544.

ABOUT THE AUTHOR

MARY SHAW is the Alan J. Perlis University Professor of Computer Science
at Carnegie Mellon University. Her research interests include software design,
software architecture, end-user software engineering, and cybersociotechnical
systems. Shaw has a PhD in computer science from Carnegie Mellon. She’s a
fellow of the ACM, the IEEE, and the American Association for the Advance-
ment of Science; she’s also a member of International Federation for Informa-
tion Processing Working Group 2.10 on Software Architecture. Contact her at
mary.shaw@cs.cmu.edu.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 29,2021 at 20:41:06 UTC from IEEE Xplore. Restrictions apply.

