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A CENTRAL TASK in design is choos-
ing what artifact will best satisfy the 
client’s needs, whether that will require 
creating an artifact or choosing from 
existing alternatives. A design space 
identifies and organizes the decisions 
to be made, together with the alterna-
tives for those decisions, thereby pro-
viding guidance for creating artifacts or 
a framework for comparing them.

Here, I discuss design spaces and 
present an example design space for a 
traffic signal simulation task. I show 
how this space enables comparison of 
the designs, and discuss the benefits of 
explicitly considering the design space 
during design—and the risks of failing 
to do so.

Design Spaces
The design space for a problem is the 
set of decisions to be made about the 

designed artifact together with the al-
ternative choices for these decisions. A 
representation of a design space is one 
of the static textual or graphical forms 
in which a particular design space—or a 
subset of that space—may be rendered.

Intuitively, a design space is a discrete 
Cartesian space in which design decisions 
are the dimensions, possible alternatives 
are values on those dimensions, and com-
plete designs are points in the space.

In this view, the design space is con-
crete. This contrasts with a common 
usage in which “design space” loosely 
refers to domain knowledge about the 
problem or even to all of a design ac-
tivity’s decisions, whether they regard 
problem analysis, the designed artifact, 
or the process of producing the design.

In practice, most interesting design 
spaces are too rich to represent in their 
entirety, so design space representations 

feature dimensions corresponding to 
the properties of principal interest. De-
sign dimensions aren’t independent, so 
choosing an alternative for one decision 
might preclude alternatives for other 
decisions or make them irrelevant. For 
example, if displaying a value is op-
tional, then decisions about the display 
format are irrelevant if the value isn’t 
displayed. If a graph displays multiple 
values, all should use the same units. 
So, representing portions of the design 
space as trees is convenient, despite the 
disadvantage of implying an order in 
which to make decisions.

A design space’s representation for a 
particular task is usually a slice of the 
complete design space that captures the 
important properties the artifact must 
have. By organizing design decisions, 
a design space helps designers consider 
relevant alternatives systematically. It 
also provides a way to compare similar 
products by highlighting differences be-
tween designs and allowing systematic 
matching to the needs of the problem at 
hand. Naturally, a good representation 
for a particular problem should reflect 
the solution’s desired properties.

Design spaces can inoculate design-
ers against the temptation to use the 
first alternative that comes to mind. For 
example, in studying software architec-
tures, I repeatedly observed developers’ 
tendency to use a familiar system struc-
ture instead of analyzing the problem 
to select an appropriate structure. Evi-
dently, they were often oblivious even 
to the existence of alternatives; that is, 
they were defaulting to familiar struc-
tures instead of designing suitable ones.

Since at least 1971,1 computer sci-
ence has used design spaces to organize 
knowledge about families of designs or 
systems to describe

•	 computer architecture,1,2

•	 user input devices,3
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•	 user interface implementation struc- 
tures,4

•	 software architectural styles,5

•	 distributed sensors,6 and
•	 typeface design.7

Design studies use the exploration of 
design spaces to find suitable designs, 
often by searching, as a model of de-
signer action.8

Often—and in most practical prob-
lems of realistic size—the design space 
is not completely known in advance. In 
this case, the elaboration of the space 
proceeds hand-in-hand with the de-
sign process. Herbert Simon treated 
the task of selection from a fixed space 
as enumeration and optimization, and 
the task of searching an unknown or 
open-ended space as search and sat-
isficing.9 These cases align (roughly) 
with routine and innovative design.

Representing  
Design Spaces
Figure 1 shows a small design space for 
sharing information via the Web. This 
is only a small slice of the entire design 
space, selected to compare representa-
tions of the same space. For this small 
example, each of the three dimensions 
has two possible values:

•	 Activation. Does the sender 
push the information to the 
reader, or does the reader pull the 
communication?

•	 Privacy. Is the communication pri-
vate to a small set of known parties, 
or is it public?

•	 Authorship. Does one person or 
an open-ended group author the 
information?

Figure 1 shows examples at ev-
ery point of the space. For instance, a 
sender pushes email to the reader’s mail-
box, the sender writes it, and it’s private 

to the sender and 
named recipients. 
Of course, more 
than one applica-
tion can occupy a 
point in this space. 
For example, in-
stant messaging 
also lies at the 
<sender push, pri-
vate, solo> point. 
Some points might 
also be unoccu-
pied. This might 
happen because 
the combinations 
of choices don’t 
make sense, or it 
might indicate an 
opportunity for new products.

Sketching multidimensional spaces 
obviously doesn’t scale well. This small 
design space admits other representa-
tions. For example, in Table 1, rows 
correspond to points in the space, and 
columns correspond to the dimensions. 
This table’s shortcoming is that it repre-
sents the points on each dimension only 
implicitly, in the values in the table’s 
body. This format can represent the 
design space only to the extent that it’s 
populated with a full range of examples.

You can also represent this design 
space by focusing on dimensions and 
their values. Figure 2 shows one such 
form. Following Frederick Brooks, the 
tree has two kinds of branches: choice 
and substructure.10 Choice branches, 
flagged with “##,” are the actual design 
decisions; usually one option should 
be chosen. Substructure branches (not 
flagged) group independent decisions 
about the design; usually all of these 
should be explored. 

Figure 2 has only one hierarchi-
cal level, but the format allows deeper 
structure; indeed, the traffic signal 
simulation space we’ll look at is much 

richer. This representation’s advantages 
are that it shows alternatives without 
relying on examples (Figure 2 adds two 
alternatives—interactive and login con-
trolled) and it handles hierarchical de-
scriptions well. Its disadvantage is that 
it represents a point in the space dif-
fusely by tagging all relevant values. 
The figure illustrates this by placing the 
email, wiki, and (static) webpage in-
stances in the representation.

Naturally, if other properties domi-
nate design concerns, a different de-
sign space would be appropriate. The 
example I just discussed addresses how 
information flows between users. If 
the properties of interest are related to 
content representation and storage, the 
dimensions of interest might be <per-
sistence, locus of state, latency, content 
type>.

The Traffic Signal 
Simulation Design Space
To relate design spaces more closely 
to practice, I turn to a problem of a 
more realistic size, drawn from the US 
National Science Foundation-spon-
sored Studying Professional Software 
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FIGURE 1. A small design space for Web information sharing. This 

representation selects three decisions about information sharing and 

shows how they correspond to some common applications.
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Design workshop (www.ics.uci.edu/ 
design-workshop). In preparation for 
this workshop, organizers videotaped 
three two-person teams as they worked 
for one to two hours on a design prob-
lem. A multidisciplinary group of de-
sign researchers analyzed the sessions’ 
tapes and transcripts, then discussed 
the sessions at the NSF workshop. The 
design task was a simulator for traffic 
flow in a street network, whose pur-
pose was to help civil engineering stu-
dents appreciate the subtlety of traffic-
light timing. The full text of the task 
statement (the prompt) is at www.ics.
uci.edu/design-workshop/files/UCI_ 
Design_Workshop_Prompt.pdf and in 
the introduction to a special issue of 
Design Studies that reports some of 
the results.11

Figure 3 presents a representation 
of the design space implicit in the tran-
scripts. None of the teams explicitly 
considered a design space, so to de-
velop Figure 3, I studied the videos and 
transcripts and identified the principal 
conceptual entities the teams included 
in their designs along with any alterna-
tives they considered. Trying to remain 
faithful to the structure that emerged 
from the design discussions, I identified 
seven principal dimensions to organize 
the alternatives and annotated them 

with details from the discussions. The 
dimensions are

•	 System Concept,
•	 Road System,
•	 Traffic Signals,
•	 Traffic Model,
•	 Simulator,
•	 Model of Time, and
•	 User Interface.

The elaboration of each of these dimen-
sions is hierarchical. In Figure 3, AD, 
IN, and MB indicate the three teams’ 
decisions.

I also reviewed the prompt, noting 
choices that the prompt itself implied. 
In some cases, I added obvious alterna-
tives that did not otherwise appear in 
the transcripts. The prompt clearly im-
plies certain design decisions, but the 
team choices were often strikingly dif-
ferent from those decisions and from 
other teams’ decisions. For example, the 
prompt says, “Students must be able 
to describe the behavior of the traf-
fic lights at each of the intersections,” 
which quite clearly indicates that stu-
dents should set and vary the signals’ 
timing. Finally, I examined the demon-
stration version of Trafficware (www.
trafficware.com), a commercial traffic 
simulation tool. This professional tool 

has obviously received more design and 
development effort than the workshop 
exercise. Nevertheless, it’s informative 
to see where it lies in the design space. 
In Figure 3, the bold red boxed text 
flags the prompt’s implications while 
highlighted backgrounds indicate Traf-
ficware’s decisions.

The resulting representation of the 
design space is incomplete in two im-
portant ways. First, the alternatives 
don’t exhaust the possibilities. Indeed, 
Trafficware presents many more pos-
sibilities. Second, this representation 
captures only the larger-grained and 
(apparently) most significant design de-
cisions. Omitted, for example, are the 
characterization of traffic entering and 
leaving at the map edges, the handling 
of left turns, and analytics. Neverthe-
less, Figure 3’s representation provides 
a uniform framework for comparing 
the designs the workshop studied.

Through a Design  
Space Lens
Figure 3 provides a basis for comparing 
the three teams’ diverse approaches and 
reflecting on ways that explicit consid-
eration of the design space might have 

Activation

| ## sender push  [email]

| ## reader pull  [wiki][web]

| ## interactive

Privacy

| ## private  [email]

| ## login controlled

| ## public  [wiki][web]

Authorship (edit or append rights)

| ## solo  [email][web]

| ## shared  [wiki]

FIGURE 2. A dimension-oriented 

representation of the design space in Figure 

1. A hierarchical representation of the design 

space of Figure 1 scales better to more 

dimensions. 
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 1 An instance-oriented representation of the design space 
in Figure 1. This alternative representation is organized 

around the points in the design space.

Instance Activation Privacy Authorship

Webpage Reader pull Public Solo

Wiki Reader pull Public Shared

Facebook status Reader pull Private Solo

Facebook wall with comments Reader pull Private Shared

Twitter Sender push Public Solo

Yahoo group as email Sender push Public Shared

Email Sender push Private Solo

Email d-list Sender push Private Shared
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helped them. I’ll concentrate on archi-
tectural decisions, which fall chiefl y un-
der the System Concept and Simulator 
dimensions.

System Concept corresponds to the 
choice of the overall system architec-
ture and thereby provides the structure 
for the rest of the design. (By “architec-
ture,” I mean the high-level concepts 
that guide system organization, not 
the selection of data structures or the 
class structure of an object-oriented 
system. Thus, “we’ll use MVC [model-
view-controller]” is architectural, but 
“a road is a queue” isn’t.) Perhaps be-
cause of the workshop’s short time 
frame, the teams spent little time ex-
plicitly discussing overall organiza-
tion. Each picked a different system 
concept. In each case, the team identi-
fi ed the top-level organization almost 
automatically, without considering and 
evaluating alternatives. It appears from 
the transcripts that the teams chose the 
overall system concept implicitly, more 
as a default than a deliberate decision.

Team AD couched their discussion 
in terms of objects. They fi rst selected 
data structures for intersections, roads, 
and the “cop,” which was the main ob-
ject to advance the state of the system 
via timer events. A high-level network 
object let users add roads, and the sim-
ulation would infer the intersections. 
The team mentioned the MVC pattern, 
but instead of using it to organize the 
design activity, they periodically tried 
to decide whether some entity (the cop 
or the clock) was a model or controller.

Team IN saw a data-driven problem 
in the prompt, so they focused on data 
items. Although they also mentioned 
MVC, they centered the design on a 
main map, to which the user added 
intersections connected to roads. The 
main map was the overall controller; 
intersections were also active objects 
that query roads for traffi c and enforce 
safety rules on lights.

Team MB focused on the problem’s 
visual aspects and considered things 

the students must do: build the map, 
create traffi c patterns, set signal tim-
ings, run the simulation, and so on. 
They organized the design around a 
drawing tool to support these activities, 

and simulation was one of the invok-
able actions.

Both AD and IN used MVC infor-
mally. In classic MVC, the controller 
is chiefl y a dynamic mediator between 

System Concept
|  ##MVC    AD
|  ##Code + User interface  IN
|  ## User Interface  MB 
|  ## Simulator

Road System
|  High-level organization
|  |  ## Intersections  AD
|  |  ## Roads 
|  |  ## Network  AD  IN
|  Intersections 
|  |  ## Collection of signals  IN
|  |  ## Signals and sensors in approaches  MB
|  |  ## Have roads (with lights and cars)  AD
|  Roads
|  |  Lanes
|  |   ## No lanes 
|  |   ## Lanes, with signal per lane  AD  IN
|  |  Throughput 
|  |  Capacity  AD 
|  |  Latency   IN  MB
|  Connection of roads to intersections
|  |  ## Intersections have queues (roads)  AD
|  |  ## Lights and sensors in approaches  MB
|  |  ## Unspeci�ed or unclear  IN 
|  |  ## Simulator handles interaction

Traf�c Signals
|  Place in hierarchy
|  |  ## Belong to roads  AD 
|  |  ## Belong to intersections  IN
|  |  ## Belong to approaches, 
    which connect roads to ints  MB
|  Safety
|  |  ## Independent lights with safety checks
|  |  |  ##Controller checks dynamically  AD  IN
|  |  |  ## UI checks at de�nition time  MB 
|  |  ## One set per intersection, selected from safe set
|  Relations among intersections
|  |  ## Independent  AD 
|  |  ## Synchronized  IN  MB
|  Setting timing
|  |  ## System sets timing  AD  IN  MB 
|  |  ## Students set timing  MB
|  Sensors
|  |  ## Immediately advance on arrival  IN 
|  |  ## Wait to synchronize 

Traf�c Model
|  ## Master traf�c object, discrete cars  MB
|  ## Discrete cars 
|  |  ## Cars with state, route, destination  MB
|  |  ## Random choices at intersections  AD  IN  MB
|  ##  Distributions only

Simulator
|  ## MVC
|  ## Set of objects
|  |  ## executing in parallel threads  IN  MB
|  |  ## traversed by a controller 
   at each clock tick  AD 
|  ## Separate model and simulation engine

Model of Time 
|  ## Uniform time ticks  AD
|  ## Scheduled event queue
|  ## Parallel threads  IN

User Interface
|  Display
|  |  Layout of visual map 
|  |   ## student’s own choosing
|  |   ## intersections implied by 
         road crossings  AD  MB
|  |  Relation of layout distances to road length
|  |   ## layout determines road length  MB
|  |   ## layout determines length, 
           constrained to grid  AD 
|  |   ## length independent of layout
|  |  De�ning the map 
|  |  ##click-drag-drop visual editing  AD  IN  MB
|  |  Setting light timing 
|  |  ## double-click on intersection  AD  MB
|  |  De�ning traf�c model
|  |   ## set traf�c loads only at edges  AD  IN    MB
|  |   ## allow traf�c to enter internally
|  |  Viewing results 
|  |   ## see individual cars, lights  MB 
|  |   ## see view of density on roads  MB 
|  |   ## see cars and aggregate statistics
|  |   ## see aggregate statistics only
|  |  Saving and restoring 
|  |   ## supported  MB
|  |   ## not supported  AD

FIGURE 3. A composite representation of several designs in the traffi c signal simulation 

design space, showing the decisions implied by the task statement (boxed red text), made by 

the three teams (AD, IN, and MB), and made by a commercial product (highlighted in yellow). 
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the user’s actions (through the view 
of the user interface) and the domain 
logic that is captured in the model. All 
three designs, especially AD, assigned 
the controller the details of running 
the simulation. When the simulation is 
running, however, the user isn’t offer-
ing input to the system. So, incorporat-
ing the simulation logic in the control-
ler might make sense for the common 
informal meaning of “controller,” but 
it’s not a good match for the MVC pat-
tern’s controller.

Figure 3’s framework helps identify 
the differences among the system con-
cepts and simulation mechanisms in 
these three designs. It also highlights 
the core task set by the fi rst sentence of 
the prompt—“designing a traffi c fl ow 
simulation program”—and the later 
charge to “focus on the important de-
sign decisions that form the foundation 
of the implementation.”

A simulator is a well-known type 
of software system with a history that 
goes back many decades. Identifying a 
system as a simulator leads to recog-
nizing—and separating in the design—
four concerns:

•	 the model of the phenomenon to 
simulate,

•	 the means of setting up a specifi c 
case to simulate,

•	 the simulation engine itself, and
•	 a simulation’s current state (includ-

ing a way to report results).

MB focused on the problem’s simu-
lation aspect, although they didn’t say 
much about the simulation engine. 

Recognizing the conventional simula-
tor structure might have helped AD 
separate “control”—that is, running a 
simulation on a specifi c case—from the 
MVC controller (which would mediate 
between the user interface and the data 
the students defi ned). Viewing the sys-
tem as a simulator might have led AD 
and IN to consider alternatives to mas-
sively parallel execution of objects. It 
would have almost certainly helped MB 
separate the user interface featuring a 
drawing tool from the model that the 
drawing tool was to create.

O rganizing design knowledge 
as a design space provides a 
framework for systematically 

considering design alternatives, for recog-
nizing interactions and trade-offs among 
decisions, and for comparing designs.

Had a design space been available 
for the traffi c signal simulation task, 
it would have provided a checklist of 
questions to consider along with possi-
ble alternatives. Even if the design space 
hadn’t been available at the outset, the 
discipline of creating a partial represen-
tation would have sensitized the design-
ers to the existence of alternatives and 
helped organize the design discussion.

Indeed, incorporating design spaces 
into normal practice would lead design-
ers to ask whether a design space had 
already been developed for this or a 
similar problem. This would help avoid 
problem analysis from scratch and help 
designers exploit domain expertise en-
coded in the design space.

A suitable representation of a design 

space also supports comparison of 
designs—in particular, the selection 
of an appropriate solution from a set 
of existing alternatives that have been 
identifi ed with points in the space. If 
the requirement is mapped to one or 
more points in the space, the solutions 
at nearby points in the space should be 
favored candidates.
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