
Design Spaces and How Software Designers Use Them:
a sampler

Mary Shaw
 School of Computer Science
 Carnegie Mellon University

 Pittsburgh PA, USA
 mary.shaw@cs.cmu.edu

Marian Petre
 School of Computing and Communications

 Open University
 Milton Keynes, UK
 m.petre@open.ac.uk

ABSTRACT
Discussions of software design often refer to using “design spaces”
to describe the spectrum of available design alternatives. This sup-
ports design thinking in many ways: to capture domain knowledge,
to support a wide variety of design activity, to analyze or predict
properties of alternatives, to understand interactions and dependen-
cies among design choices. We present a sampling of what
designers, especially software designers, mean when they say “de-
sign space” and provide examples of the roles their design spaces
serve in their design activity. This shows how design spaces can
serve designers as lenses to reduce the overall space of possibilities
and support systematic design decision making.

CCS CONCEPTS
Software and its engineering → Software creation and management
→ Designing software → Software design engineering

KEYWORDS
Design spaces, software design, design exploration

ACM Reference format:

Mary Shaw and Marian Petre. 2024. Design spaces and how software de-
signers use them: a sampler. In Designing '24: 2024 International
Workshop on Designing Software Proceedings. 8 pp.
https://doi.org/10.1145/3643660.3643941

1. What are design spaces?
As Simon famously said, “Everyone designs who devises

courses of action aimed at changing existing situations into pre-
ferred ones” [36]. We consider here design spaces, ways of
describing existing situations and possible preferred ones, and the
ways design spaces are used by software designers. Design spaces
are widely used by designers in many domains. We draw on that

broad experience to provide context, examples, and guidance for
their use in software engineering.

Design spaces embody the design alternatives for problem do-
mains or applications. In practical systems, both the design
alternatives and the dependencies among the choices for those al-
ternatives are numerous and open-ended. This creates a dilemma
for designers: how to reduce the intellectual complexity of the
open-ended “space of possibilities” to something manageable by
focusing on a subset of the complete space that is most helpful in
the current state of the design, i.e., a “design space”. In identifying
a design space, a designer chooses some perspective on the “space
of possibilities” intended to help reduce the number of alternatives
and dependencies, then navigates within that selected subset
[4][9][23][28][43]. The different perspectives, like lenses, have a
particular “focal range” or orientation (e.g., structured vs inte-
grated, as discussed in the sections that follow) that shapes both the
priorities and the process of exploration.

Figure 1: Distinctions among the space of all possibilities, the sub-
set of designs accessible in a design space, and the designs in that
subset that are worthy of consideration. Not to scale.

Woodbury and Burrow [43] recognize the vastness of the space
of all design possibilities, with finite but incomprehensibly large
numbers of possibilities, and with worthy designs a vanishingly
small subset of the space. In such a setting, the problem is not
whether a good design exists but whether it is accessible to a de-
signer searching the space. The full set of design alternatives is
usually quite rich and quite interconnected, and a decision about
one aspect of the design influences choices about other aspects.
Schön says “A designer makes things.… Typically this making pro-
cess is complex. There are more variables—kinds of possible
moves, norms, and interrelationships of these—than can be repre-
sented in a finite model” [29]. Hence design spaces are helpful—
but incomplete.

Engineering practice includes both routine and innovative (also
called normal and radical) design tasks; the former involve familiar
problems and reuse of large portions of prior work, and the latter

This work is licensed under a Creative Commons Attribution- International 4.0 License.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Designing '24: April 15-14, 2024, Lisbon, Portugal
© 2024 Copyright held by the authors
ACM ISBN 979-8-4007-0563-2/24/04.
https://doi.org/10.1145/3643660.3643941

1

2024 IEEE/ACM International Workshop on Designing Software (Designing)

Designing 2024, April 2024, Lisbon Portugal Mary Shaw and Marian Petre

calls for novel solutions to unfamiliar problems [30]. Within rou-
tine design the design spaces have arguably been well-mapped for
well-scoped domains. Innovative design, by its nature, requires the
designer to engage deeply with the alternatives. Hence the present
discussion focuses on innovative design—including engagement
with “wicked” problems that resist solution [25] —where the
choice of design space and the nature of the designer’s engagement
with design alternatives is instrumental1.

Designers sometimes address the complexity of the design
space by taking a structured approach, making simplifying assump-
tions to manage the complexity, for example by (provisionally)
assuming independence of decisions or focusing on a few principal
aspects of the design2. At other times, they undertake integrative
exploration, keeping the dependencies front-of-mind as they ex-
plore their problem understanding and design options3. Broadly
speaking, structured spaces tend to be associated with explicit
knowledge; depth-first search of the design space; treatment of de-
cisions as independent; and reductionist reasoning. On the other
hand, integrative design spaces tend to be associated with tacit
knowledge; breadth-first search of the design space; attention to de-
pendencies among decisions; and holistic reasoning. In both cases,
designers often revise the aspects under consideration as the design
evolves4. The choice between integrative and structured lenses
leads to different approaches to the design space, different repre-
sentations, and different uses5.

These lenses are discussed in more detail in the sections that
follow, with concrete examples from the literature both in software
design and other domains.

2. Structured design spaces for domains
Some design processes create explicit, structured descriptions

of the design alternatives. This often focuses primary attention on
the design choices rather than the dependencies among these
choices. They address the complexity of the design space by mak-
ing simplifying assumptions such as focusing—for the moment—
on a few of the most significant design decisions and their alterna-
tives; they may assume independence among the choices6. This is
comparable to the engineer’s inclination to use linear models when-
ever possible: they’re simple, understandable, tractable, and often
good enough7.

This approach leads to design spaces with descriptions such as
“The design space in which a designer seeks to solve a problem is
the set of decisions to be made about the designed artifact together
with the alternative choices for these decisions. … Intuitively, a de-
sign space is a discrete Cartesian space in which the dimensions
correspond to design decisions, the values on each dimension are
the choices for the corresponding decision, and points in the space
correspond to complete design solutions” [33]

1 Experts generate alternatives. #45 Petre and van der Hoek [24] identified 66 in-
sights/practices manifested by expert designers, based on empirical research. We call
out relevant insights by their numbers.
2 Experts solve simpler problems first. #2
3 Experts keep options open. #30
4 Experts reshape the problem space. #20

A key to these examples is creating an explicit representation of
the design decisions, the alternative choices, and perhaps the de-
pendencies. These examples show a variety of representations;
each is presumably appropriate for its problem and might not be so
for other problems8. Some are largely Cartesian, some are hierar-
chical, some are more complex. Some are graphical, some are
textual, some are mathematical models. For some the alternatives
are ratio-scale measures, for others some of the dimensions are on
nominal or cardinal scales.

Design spaces most often address the problem or requirement
space (what the client needs) and the solution or implementation
space (how the implementation will accomplish that). They may
emphasize functionality, quality attributes, or value information.

The vastness of the design space arises from the open-ended set
of possible design decisions. Not only does this lead to combinato-
rial explosion, it flies in the face of conventional assumptions that
specifications are complete and static. We therefore prefer the con-
cept of credentials that capture what you know now, evolve by
adding new properties over time, and note the confidence in their
correctness9 [31].

Designers use these design spaces in many ways (discussed
briefly in the sections that follow), including:
 Comparing and evaluating existing designs (Section 2.1)
 Capturing domain knowledge (Section 2.2)
 Mapping from problem space to solution space (Section 2.3)
 Analyzing quality attributes (Section 2.4)
 Performing tradeoff analysis in a well-understood domain

(Section 2.5)
Defining a design space explicitly entails selecting which di-

mensions to consider out of all the possible properties that require
decisions. The goals of the design and intended use for the space
should shape this selection, so the design dimensions of interest are
highly dependent on context, and they are likely to change as the
designer’s understanding of the problem evolves. This is a form of
Schön’s “reflective conversation with the situation” [28].

2.1. Comparing and evaluating existing designs
Design spaces can be used to compare existing designs, for cri-

tique, for evaluation, for selection among products10. This is less
subject to the risk of oversimplification than other uses, because the
current set of designs is known.

At the Software Designers in Action workshop [41], numerous
researchers undertook independent analyses of videos of pairs of
designers at a whiteboard, each pair addressing the same design
brief for traffic signal simulator. (N.B. An analysis from the work-
shop using a different lens is in Sec 3.1.) As one of the studies in
this workshop, Shaw defined a design space to compare the design
decisions made by the three teams, the choices implied by the
prompt, and the decisions evident in a commercial product [33].
Figure 2 shows the diversity of choices made. For example, all three
groups made different decisions about whether traffic signals

5 Experts explore different perspectives. #46
6 Experts design elegant abstractions. #5
7 Experts prefer simple solutions. #1
8 Experts invent notations. #28
9 Experts draw what they need and no more. #26
10 Experts look around. #14

2

Design Spaces and How Software Designers Use Them Designing 2024, April 2024, Lisbon Portugal

should be most closely associated with roads, with intersections, or
with an entity that connects roads to intersections; a commercial
tool associated the signals with intersections.

This representation of the design space emphasizes the dimen-
sions. Following Brooks [4], each major group of decisions is
represented as a tree with two kinds of branches: choice and sub-
structure. Substructure branches (not tagged) group independent
design decisions; choice branches, flagged with “##”, provide al-
ternatives. In some cases, the decision is a numeric value, and the
choices are implicit.

Figure 2: Part of the comparison of several designs for the traffic
signal simulator, showing the decisions implied by the task state-
ment (boxed red text), made by the three teams (AD, IN, and MB),
and made by a commercial product (highlighted in yellow) [32]

In an example from another discipline, Römer and Mattern cre-
ated a design space to compare 15 implementations of wireless
sensor networks [27]. They observed that the proliferation of such
networks with vastly varying requirements and characteristics was
making it increasingly difficult to have useful discussions within
the community. They identified 14 major dimensions, most with
two or more related subdimensions.

11 Experts address knowledge deficiencies. #38

Early superscalar hardware required register renaming to re-
solve performance bottlenecks. Sima studied a decade of register
renaming techniques in 26 RISC and 14 CISC commercial super-
processors and identified a hierarchical design space with four
major dimensions to help designers understand and explore this
complex space [35].

2.2. Capturing domain knowledge
Design spaces are sometimes defined to capture and explain

knowledge about a domain, especially knowledge that will shape
many designs of products11. Dimensions of the space are selected
to highlight principal distinctions; accordingly, they tend to be
fairly static, perhaps evolving as understanding of the domain
evolves. However, different aspects of the domain may be signifi-
cant for different applications, so the dimensions should be selected
with that breadth in mind.

In the early development of software architecture styles, Shaw
and Clements classified architectural styles in order to establish a
uniform descriptive vocabulary, to explain carefully the distinc-
tions among styles, and to lay the groundwork for providing advice
about choosing a style appropriate to a problem [34]. The resulting
“Boxology” identified six major classes of styles: data flow, call-
and-return, interacting processes, data-centered repositories, data-
sharing, and hierarchical. Each of these had several specific vari-
ants, differing in their constituent parts and their data and control
issues. Figure 3 shows a snippet of this space covering one of the
major styles.

Following the example of Lane’s design space for user interface
components [20] (see Section 2.3), the Boxology work identified a
few rules of thumb for style selection. For example, it suggested “If
a central issue is understanding the data of the application, ... [and]
if the data is long-lived, focus on repositories. If the input data is
noisy and execution order cannot be predetermined, consider a
blackboard.” [34].

Figure 3: Snippet of design space for software architecture styles, covering data-centered repositories. Columns correspond to dimensions
of the design space [34]

3

Designing 2024, April 2024, Lisbon Portugal Mary Shaw and Marian Petre

2.3. Mapping problem space to solution space
If both the desired properties of the design (i.e., the require-

ments) and the implementation alternatives are described by design
spaces (that is, if both a problem space and a solution space are
under consideration), it is attractive to look for a mapping that
guides the designer from a region of the problem space to promis-
ing regions in the solution space12.

Lane did this analysis for user interface software structures [20].
He interviewed designers of six software systems to discover the
characteristics of the user interface components of their systems
and the implementation choices they had made. Based on this, he
created detailed functional and structural design spaces. Figure 4
shows the principal structure of these spaces; the full functional
space has 25 dimensions, each with 3 to 5 alternatives, and the full
structural space has 19 dimensions, each with 2 to 7 alternatives.
He developed a set of design rules for a recommendation engine
that took as input a functional description and produced a ranked
set of recommendations for the structural choices; he validated this
statistically against the actual designs produced by his subjects. He
also produced a set of over three dozen narrative design rules for
use by human designers, e.g.: “High user customizability require-
ments favor external notations for user interface behavior. Implicit
and internal notations are usually more difficult to access and more
closely coupled to application logic than are external notations.”

Figure 4. Overview of functional and structural design spaces for
user interface structures [20]

Baum et al. proposed an extension of Lane’s model as a design
aid for software architecture [3]. They added correlations between
dimensions in the functional and structural spaces to show strict
dependence, incompatibility, or dependencies that create tradeoff
decisions13. They also expressed design rules between the func-
tional and structural spaces as correlations.

A design space for self-adaptive systems was developed by
Brun et al. to guide designing such a system based on given require-
ments [5]. It identifies five clusters of design decisions related to
control aspects of self-adaptive systems and represents them as
questions to be answered by the designer.

2.4. Analyzing quality attributes
In addition to the largely-descriptive, largely-qualitative exam-

ples above, design spaces are also created and explored to analyze
or predict quantitative or formal attributes of the designs. This is

12 Experts draw the problem as much as they draw the solution. #25

particularly challenging in modern systems that involve uncertain-
ties arising from lack of control over third-party components,
physical components of cyberphysical systems, or human behavior.

Cámara et al. developed a technique for making probabilistic
guarantees about such systems [6][7]. Their design space is the set
of possible software configurations that are defined by and gener-
ated from a formal model that includes structural constraints
(architectural style) and application-specific constraints. They ex-
plore the design space by further filtering this set of configurations,
for example with additional constraints, and quantifying the proba-
bilities of outcomes associated with quality attributes. Unlike most
examples in this section, which are represented by explicitly enu-
merating alternatives, the Cámara design spaces are represented by
formal models.

2.5. Performing tradeoff analysis in a well-under-
stood domain

Disciplines often share and compare results using a consensus
model of a well-understood example. Historically, “stack” served
this role for programming languages as did “dining philosophers”
for synchronization algorithms and “lift” and “library” for interme-
diate-level software design. A shared design space can support this
sharing with a concrete representation of the choices in a well-un-
derstood domain.

In the domain of hardware/software co-design, a class of per-
formance-critical signal-processing problems involves configuring
hardware-software allocation and parameterization for system-on-
a-chip (SoC) applications. “During system-level design space ex-
ploration (DSE), system parameters (e.g., the number and type of
processors, and the mapping of application tasks to architectural
resources) are considered. The number of design instances that
need to be evaluated during such DSE to find good design candi-
dates is large … techniques are needed to optimize the DSE process”
[40]. Solutions must balance tradeoffs among chip area, latency,
and power [44].

Approaches to achieving designs with better performance in-
clude genetic algorithms [37][40], parameter dependency for high-
level pruning with genetic algorithms to find a Pareto-optimal
tradeoff subspace [21], and semi-random heuristics combined with
integer linear programming [44]. Details of the design spaces may
differ, but the point of view that performance optimization is cou-
pled to search space exploration is strong. The research is heavy on
formalism and includes empirical results.

Kang et al. addressed a similar problem of mapping tasks to de-
vices with a design space exploration technique that systematically
eliminated equivalent candidates, based on a user-defined equiva-
lence [19]. This enabled them to generate the relevant candidates
from the space in a cost-effective manner.

3. Integrative Design Spaces
Some design processes refer to working in a design space, but

don’t represent the rich and complex space of alternatives explicitly.
They often are more concerned with the design process that exposes

13 Experts make tradeoffs. #34

Functional Dimensions Structural dimensions
1. External requirements 1. Division of functions & knowledge
 a. Application characteristics a. Application interface
 b. User needs b. Device interface
 c. I/O devices 2. Representation issues
 d. Computer sys environment a. Means of user interface definition
2. Basic interactive behavior b. Representation of application info
 a. Interface class c. Data reps for communication
 b. Flexibility of interaction d. Representation of interface state
 sequencing 3. Control flow, comm, synch issues
3. Practical considerations a. Control flow
 a. Portability of applications b. Communication mechanisms
 b. Adaptability of UI system c. Synchronization issues

4

Design Spaces and How Software Designers Use Them Designing 2024, April 2024, Lisbon Portugal

and contrasts alternatives, than with the enumeration or representa-
tion of the alternatives per se. Hence Woodbury and Burrow [43]
argue that design spaces and their representations are helpful—
maybe even necessary—tools, but that they should not dictate the
design, which requires reasoning beyond representation details14.
Integrative designs are concerned with a broad exploration of the
design space(s), with a focus on identifying the key design consid-
erations—and with ongoing attention to the interactions among the
design requirements and features, and the dependencies among the
choices explored. Hence, the exploration prioritizes the “essence”
of the problem and defers other elements15. Schön characterized
this integrative approach [28]: “Let us search ... for an epistemol-
ogy of practice implicit in the artistic, intuitive processes which
some practitioners bring to situations of uncertainty, instability,
uniqueness, and value conflict”.16

3.1. Co-evolution of problem & solution spaces
Dorst and Cross studied nine professional designers working on

a design for a litter disposal system for trains [14]. They found that
the designers start by exploring the problem space and positing a
partial solution17. They then explore the partial solution in the so-
lution space, which provides insights about the problem space as in
Figure 5. Rinse, lather, repeat.

Figure 5. Problem-solution space co-evolution [14]

Curtis reported similar design behavior in software designers
[10]. Guindon [17] found that designers bounced among levels of
abstraction and developed mental models of the problem domain
and the solution concurrently18. Figure 6 shows this, with Curtis’
overlay showing the expected attention of a waterfall model. This
opportunistic behavior occurred even when a trained software de-
veloper attempted to do top-down development. Curtis observed
that design insights reorganize the designer’s model of the problem

14 Experts think about what they are not designing. #60
15 Experts focus on the essence. #37
16 Experts adjust to the degree of uncertainty present. #36

domain, which creates new relations between the problem and so-
lution domains19.

In one of the studies from the Software Designers in Action
workshop [41], Tang et al. analyzed the effectiveness of the two
teams’ design strategies [39]]. (N.B. An analysis from the work-
shop using a different lens is in Sec 2.1.) One of these strategies is
problem-solution co-evolution, in which both the problem space
and the solution space are developed and refined together; they as-
sociate this with the process of Figure 5.

3.2 Tightly-coupled decisions
Penders et al. [23] describe an exploration-based design strategy

that identifies different design-space dimensions and uses inter-de-
pendency rules between those dimensions to make systematic
design decisions. “Inter-dependency rules describe the influence
design choices in one dimension have on other design dimen-
sions…” and “Inter-dependency rules indicate that, when limiting
the choices in one dimension, there is a direct effect on possible
design choices in its dependent dimension(s). Thus, inter-depend-
encies form a navigation guide for the designer, as they imply
correlations between dimensions: after inspecting a design dimen-
sion a logical next step is to inspect dependent dimensions.” [23]

Hence, the interactions between decisions are a principal focus
of the design space analysis. Penders et al. argue that “One of the
important advantages of the presented exploration-based design
strategy is its ability to enforce a systematic decision for each di-
mension in the space” [23]. Figure 7 shows such inter-dependency
rules in the context of hardware/software co-design.

Figure 7. Dependency relationships among decisions [23]

The richness of the interactions among decisions is well illus-
trated by an example outside of software engineering, the selection
of resins for molding plastic parts [18]. Requirements for a molded
part might include stiffness, dimensional stability, and resistance to
UV; production requirements might include cost of resin, complex-
ity of molding process, and reliability of supplier. ”Resin properties

17 Experts make provisional decisions. #31
18 Experts move among levels of abstraction. #47
19 Experts re-assess the landscape. #61

Figure 6. Process map of a software design [17], overlay by [10]

5

Designing 2024, April 2024, Lisbon Portugal Mary Shaw and Marian Petre

influence part performance. … A gain in one property often coin-
cides with a loss in another … Every resin property required for an
application influences material selection in varying degrees.”

3.3 Implicit design spaces with coupled decisions
Sometimes the important design decisions are related to keeping

a system in balance, with an appropriate balance of resources. Here
the explicit description of the design space may take a back seat to
reasoning about the interactions, so the design space is implicit in
the problem analysis20. Devereaux [11] considers such a case of
logistic considerations for swift operational army maneuvers in the
pre-gunpowder period, when “march fast” was the secret to major
victories. The essential question is the relation between distance,
speed, and force size for moving an army through enemy territory.
Devereaux’ analysis goes through these steps:
 The limiting factor is meeting nutritional demands; adult men

need ~3000 calories/day [identified key factor: food]
 Historically, this has worked out to ~3 lb of food per person

per day, assuming water is available [new parameter: weight
per person per day]

 Marching loads are ~80-100 lbs per person with non-food load
accounting for all but ~30lb, so ~10 days rations [new factor:
food transport]

 The duration can be extended by carrying additional supplies.
In addition to food for soldiers, you need food for porters, or
horses, or mules. In practice this can only extend the duration
to ~40 days [relax the 10-day limit on food transport with a
pack train, but at cost of more food and less speed]

 More supplies can be acquired en route by foraging, but this
has limited capacity and slows the movement; there is a
tradeoff between short operational range at good speed and
slower movement with unwieldy supply lines [new parameter
for food transport, with associated costs]

 The army will have many non-soldiers performing various du-
ties; this can range from 20% to nearly 100% more human
mouths to feed, plus animals [discovered a new parameter, the
“tooth to tail” ratio, the ratio of soldiers to support people]

 Bigger armies are slower and harder to coordinate and secure
[size affects speed]

The analysis goes on in considerably more detail, but this sum-
mary already shows a design space with factors including food,
weight of food per day, food transport, ratio of soldiers to noncom-
batants, and number of horses/mules; these are major determinants
of size of army, rate of movement, duration in days, and operational
range. These factors interact in ways that sharply constrain the fea-
sible points in the design space.

4. How Designers Use Design Spaces
As discussed, design spaces embody the design alternatives for

problem domains or applications, providing different lenses on the
design possibilities21. What emerges from the sample of design
spaces is their role as tools for designers, assisting them:
 To systematize understanding of the alternatives (scope and

characteristics) (Section 4.1)

20 Experts retain their orientation. #59
21 Experts change notation deliberately. #49

 To systematize navigation of the alternatives (exploration and
decision processes) (Section 4.2)

 To support orderly evolution of understanding (through the
process of exploration) (Section 4.3)

 To support the orderly reuse of prior art (when existing solu-
tions are appropriate) (Section 4.4).

4.1 Systematize understanding of alternatives
The examples demonstrate the utility of various design spaces

in helping to identify key design considerations, alternatives, and
the interactions between them. These may be known—or they may
emerge as part of the design space exploration, or in the contrast
between different design spaces. Hence, by helping designers ex-
ternalize (and hence examine) their understanding, design spaces
help designers to check for coverage by prompting them to consider
alternatives systematically within the space. On the other hand, the
systematic exploration can help identify regions of the design space
that are not currently relevant, feasible, or prioritized—helping to
reduce the alternatives in a reasoned way.

Schön [29] discussed this as problem framing: “In order to for-
mulate a design problem to be solved, the designer must frame a
problematic design situation: set its boundaries, select particular
things and relations for attention, and impose on the situation a co-
herence that guides subsequent moves.”

4.2 Systematize navigation of the alternatives
In order to achieve this understanding, designers need to navi-

gate the design space effectively and systematically. Many authors
(e.g., Simon, Newell, Brooks) characterize design as search in a
design space. Whitworth and Ahmad further characterize that
search as choosing a point in the design space: “System design is
choosing a point in a multi-dimensional design criterion space with
many "best" points, e.g. a cheap, heavy but powerful vacuum
cleaner, or a light, expensive and powerful one. The efficient fron-
tier is a set of "best" combinations in a design space. Advanced
system performance is not a one-dimensional ladder to excellence,
but a station with many trains to many destinations.” [42]

That navigation—how designers explore the design space, and
how they choose among alternatives—can take different forms, in-
fluenced not only by the design objectives but also, for example, by
their domains, experience, representations, processes, etc. Com-
puter scientists are naturally inclined to view this search through an
algorithmic lens, expecting systematic, orderly, potentially exhaus-
tive traversal of the search space. Brooks [4] notes the appeal of a
rational model that systematically searches the design space but
also observes that this model is vastly oversimplified: real design-
ers just don’t work that way 22 . In particular, designers often
satisfice, stopping the search when an acceptable, if not optimal so-
lution is found23 . Guindon [17] found an opportunistic mix of
breadth-first and depth-first search (see Figure 6). Brooks reports
critiques by Cross [9], Schön [28], Akin [1], Royce [26] and others
that show not only complex navigation of the search space but also
evolution of the space itself as design proceeds. The aspiration to
systematic and rational reasoning about design, and the pragmatics

22 Experts use design methods (selectively). #17
23 Experts know when to stop. #42

6

Design Spaces and How Software Designers Use Them Designing 2024, April 2024, Lisbon Portugal

of working within the constraints of human cognition are the es-
sence of design space exploration; Dorst [12] still reported in 2006
that the rational, systematic model still looms large in the field.

The representation of the design space may also influence the
way it’s navigated. A hierarchical representation in which each de-
cision shapes the alternatives available for future decisions tends to
encourage making decisions in the order embedded in the hierarchy.
“What remains unclear is to what extent such strategies are condi-
tioned by the external memory aids available to designers” [43].

4.3 Support orderly evolution of understanding
Designers’ understanding of the design space evolves through

the process of exploration. As Cross [8] reported: Schön [28] also
pointed out that “the work of framing is seldom done in one burst
at the beginning of a design process.” This was confirmed in Goel
and Pirolli’s [15] protocol studies of several types of designers (ar-
chitects, engineers, instructional designers). They found that
“problem structuring” activities not only dominated at the start of
the design task, but also re-occurred periodically throughout the
task24. This points to the interaction between the problem space and
the solution space.

As the understanding of the design space evolves, the process
may reveal critical factors (or change the priorities of different fac-
tors) and/or reveal assumptions 25 . As a result, new possible
solutions may emerge. Some of the examples highlight the con-
trasts between design spaces, and in particular the interchange
between the problem space and the solution space. “Many studies
of expert design behavior suggest that designers move rapidly to
early solution conjectures, and use these conjectures as a way of
exploring and defining problem-and-solution together”26 [8].

Dorst asserts, “We urgently need a strong descriptive and ana-
lytical framework to help us understand what is actually going on
in the “upwards jump” from solution to problem, and how we can
safeguard against the misuse and manipulation of emergence” [13].

4.4 Support orderly reuse of prior art
Although this discussion has prioritized innovative or radical

design, design spaces play a key role in routine or normal design as
well, where for each instance the task is selecting an established
design from a well-defined family27.

In typography, a designspace [sic] is an element of a typeface
design that controls how a variable font’s appearance changes (by
interpolation) as its variation axes
are adjusted [16][38]. A variable
font with weight and width axes has
a 2-dimensional space, as in Figure
8; some parametric fonts have 10 or
more dimensions of variability. This
allows users of the font to tune, but
not to otherwise redesign, the font.
Font designers, of course, use the
designspace to represent the range
of variability they intend [38].

24 Experts design throughout the creation of software. #22
25 Experts are alert to evidence that challenges their theory. #57
26 Experts make provisional decisions. #31

In the domain of civil engineering, Pennsylvania mandates the
use of the Bridge Automated Design and Drafting (BRADD) soft-
ware for new and replacement single span bridges [22]. This
software automates the bridge design process from problem defini-
tion through contract drawings for specific types of simple single-
span bridges. The scope is concrete, steel, and prestressed concrete
bridges with spans from 18 to 200 ft, with a variety of site-specific
parameters. It offers 5 types of superstructures and 3 types of abut-
ments. It consists of 4600 Fortran routines (730,000 lines of code),
590 dimensions/parameter/data files (92,500 lines of data), and 260
graphic details containing 976 overlays, and a Visual Basic user
interface of 83,000 lines of code.

5. Conclusion
We sampled the literature, primarily in software engineering

and principally in system-level design, to find examples of how de-
signers use design spaces. This is not a comprehensive survey, let
alone a systematic review. We reached for the low-hanging fruit, a
set of examples rich enough to show the diversity of uses in practice.
We included examples from other fields to emphasize that design
spaces are integral to design generally, not specifically a software
construct. This serves our main purposes: to raise the visibility of
this design tool, to improve communication by clarifying its vari-
ous meanings, and to exhibit multiple uses that may stimulate
further development.

This sampler shows the wide diversity in content, representation,
and use. The main point is the idea of structuring knowledge about
a design; the specifics are tools that help designers think, not rigid
rules that require adherence28.

You, the reader, may use “design space” in yet another way.
That’s fine, and some future extension of this work might include
your use. You should, however, be aware of other ways that other
people use the term so that you and they can communicate without
confusion; the other examples may inspire you to extend your own.

The designer’s principal responsibility is to understand the cli-
ent’s needs and commit to finding a solution that satisfies those
needs. All of the models, methods, notations, representations,
frameworks, and processes of software engineering—including de-
sign spaces—are tools to that end, not ends in themselves. The
designer should select the ones that help with the problem at hand.
These examples show that design spaces deserve their place in this
toolkit, with details of their role in any particular design subject to
the judgment of the designer.

ACKNOWLEDGMENTS
We thank our colleagues who have contributed to this sampler
through their research and discussion. This work was partially sup-
ported by the Alan J. Perlis chair of Computer Science at Carnegie
Mellon University.

27 Experts prefer solutions that they know work.#13
28 Experts do not feel obliged to use things as intended. #23
 Experts use notations as lenses, rather than straightjackets. #21

Figure 8. Points in a font
design-space [16]

7

Designing 2024, April 2024, Lisbon Portugal Mary Shaw and Marian Petre

REFERENCES
[1] Omer Akin. Variants and invariants of design cognition. Design Thinking Research

Symposium 7, Taylor and Francis 2008. Reported in [Br10].
[2] Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of Modularity, volume

1. MIT Press 2000. doi: 10.7551/mitpress/2366.001.0001
[3] Lothar Baum et al. Architecture-Centric Software Development Based on Extended

Design Spaces. In: van der Linden, F. (eds) Development and Evolution of Software
Architectures for Product Families. ARES 1998. Lecture Notes in Computer Science,
vol 1429, Springer. doi: 10.1007/3-540-68383-6_28

[4] Frederick P. Brooks, Jr. The Design of Design. Pearson 2010
[5] Yuri Brun, et al. A Design Space for Self-Adaptive Systems. In: Rogerio de Lemos et

al. (eds) Software Engineering for Self-Adaptive Systems II. Lecture Notes in Com-
puter Science, vol 7475, 2013, Springer. doi: 10.1007/978-3-642-35813-5_2

[6] Javier Cámara et al. Synthesizing tradeoff spaces with quantitative guarantees for fam-
ilies of software systems. Journal of Systems and Software, Volume 152, 2019, pp 33-
49, doi: 10.1016/j.jss.2019.02.055.

[7] Javier Cámara. HaiQ: Synthesis of software design spaces with structural and proba-
bilistic guarantees. Proc. 8th Int’l Conf on Formal Methods in Software Engineering
(FormaliSE '20). ACM, pp 22–33. doi: 10.1145/3372020.3391562

[8] Nigel Cross (2004) Expertise in design: an overview. Design Studies, 25 (5) Septem-
ber 2004, pp. 427-441.

[9] Nigel Cross. Designerly Ways of Knowing. Birkhauser Architecture 2007.
[10] Bill Curtis. Insights from empirical studies of the software design process. Future

Generation Computer Systems, Volume 7, Issues 2–3, 1992, pp 139-149, , doi:
10.1016/0167-739X(92)90002-S

[11] Bret Devereaux. Logistics, How Did They Do It. [blog, three parts] A Collection of
Unmitigated Pedantry, July 2022. https://acoup.blog/2022/07/15/collections-logis-
tics-how-did-they-do-it-part-i-the-problem/

[12] Kees Dorst. Design problems and design paradoxes. Design Issues 22: 4-17. Reported
in [Br10]

[13] Kees Dorst, 2019, Co-evolution and emergence in design, Design Studies, 65, pp 60-
77, doi: 10.1016/j.destud.2019.10.005. (https://www.sciencedirect.com/science/arti-
cle/pii/S0142694X19300614)

[14] Kees Dorst and Nigel Cross. Creativity in the design process: co-evolution of prob-
lem–solution. Design Studies, Volume 22, Issue 5, 2001, Pages 425-437. doi:
10.1016/S0142-694X(01)00009-6.

[15] V. Goel and P. Pirolli. The Structure of Design Problem Spaces. Cognitive Science
Vol 16 (1992) 395–429

[16] Google. Designspace. Google Fonts knowledge glossary, Retrieved November 2023.
https://fonts.google.com/knowledge/glossary/designspace

[17] R. Guindon. Designing the Design Process: Exploiting Opportunistic Thoughts. Hu-
man-Computer Interaction, 5, 305-344. doi: 10.1207/s15327051hci0502&3_6

[18] Michael Hansen. Material Selection: The Right Resin for Your Design. MD&DI Med-
ical Device and Diagnostic Industry Magazine, February 2008, unpaginated.
https://www.mddionline.com/materials/material-selection-right-resin-your-design

[19] Eunsuk Kang et al. An Approach for Effective Design Space Exploration. In: Calin-
escu, R., Jackson, E. (eds) Foundations of Computer Software. Modeling,
Development, and Verification of Adaptive Systems. Monterey Workshop 2010. Lec-
ture Notes in Computer Science, vol 6662. Springer. doi: 10.1007/978-3-642-21292-
5_3

[20] Thomas G. Lane. User Interface Software Structures. PhD thesis, Carnegie Mellon
University, May 1990. Somewhat more accessible are two technical reports, Studying
Software Architecture Through Design Spaces and Rules, CMU/SEI-90-TR-18 and
CMU-CS-90-175, and Design Space and Design Rules for User Interface Software
Architecture, CMU/SEI-90-TR-22 and CMU-CS-90-176.

[21] Maurizio Palesi and Tony Givargis. Multi-objective design space exploration using
genetic algorithms. Proc tenth Int’l Symp on Hardware/software codesign (CODES
'02), 2022. ACM, 67–72. doi: 10.1145/774789.774804

[22] Pennsylvania Department of Transportation. Design Manual, Part 4 Structures. PDT
Pub No 15M December 2019. https://www.dot.state.pa.us/public/PubsForms/Publica-
tions/PUB%2015M.pdf

[23] Ate Penders et al. Design-Space Exploration for Decision-Support Software. Proc.
37th IEEE/ACM Int’l Conf on Automated Software Engineering (ASE '22), 2022.
ACM, Article 134, 1–6. doi: 10.1145/3551349.3559502

[24] Marian Petre and André van der Hoek. Software Design Decoded: 66 Ways Experts
Think. MIT Press 2016.

[25] Horst W. J. Rittel and Melvin M Webber. Dilemmas in a general theory of planning.
Policy Sciences 4 (1973), pp. 155-169. http://www.jstor.org/stable/4531523 This is
the “wicked problems” paper.

[26] Winston W. Royce, Managing the development of large software systems: concepts
and techniques. Proc. 9th Int’l Conf on Software Engineering (ICSE '87). IEEE Com-
puter Society, 328–338.

[27] Kay Römer and Friedemann Mattern, The design space of wireless sensor networks,
IEEE Wireless Communications, vol. 11, no. 6, pp. 54-61, Dec. 2004, doi:
10.1109/MWC.2004.1368897.

[28] Donald A. Schön. The Reflective Practitioner: How Professionals Think in Action.
Basic Books 1983.

[29] Donald A. Schön. Designing: rules, types and worlds. Design Studies Vol 9 (1988)
181–190.

[30] Mary Shaw, Prospects for an engineering discipline of software, IEEE Software, vol.
7, no. 6, pp. 15-24, Nov. 1990, doi: 10.1109/52.60586.

[31] Mary Shaw, Truth vs. knowledge: the difference between what a component does and
what we know it does, Proc 8th Int’l Workshop on Software Specification and Design,
Schloss Velen, Germany, 1996, pp. 181–185. doi: 10.1109/IWSSD.1996.501165

[32] Mary Shaw. The role of design spaces. IEEE Software, vol. 29, no. 1, pp. 46-50, Jan.-
Feb. 2012, doi: 10.1109/MS.2011.121.

[33] Mary Shaw. The role of design spaces in guiding a software design. In Software De-
signers in Action: a Human-Centric Look at Design Work. Marian Petre and André
van der Hoek (ed). Chapman and Hall/CRC, 2013.

[34] Mary Shaw and Paul Clements. A field guide to boxology: Preliminary classification
of architectural styles for software systems. Proc. COMPSAC97, 21st Int'l Computer
Software and Applications Conf, August 1997, pp.6–13. doi: 10.1109/CMP-
SAC.1997.624691

[35] Dezsö Sima, The design space of register renaming techniques, IEEE Micro, vol. 20,
no. 5, pp. 70-83, Sept.-Oct. 2000, doi: 10.1109/40.877952.

[36] Herbert A. Simon. The Sciences of the Artificial. 1st ed, MIT Press, 1969.
[37] Vinoo Srinivasan et al. Hardware software partitioning with integrated hardware de-

sign space exploration. ProcDesign, Automation and Test in Europe, Paris, France,
1998, pp. 28-35, doi: 10.1109/DATE.1998.655833.

[38] Superpolator. Designspace Theory: some ideas on construction and use. Retrieved
November 2023. https://superpolator.com/designspace.html

[39] Antony Tang, et al. What makes software design effective?. Design Studies 31 (2010)
614-640. doi:10.1016/j.destud.2010.09.004

[40] Mark Thompson and Andy D. Pimentel. Exploiting domain knowledge in system-
level MPSoC design space exploration. J. Syst. Archit. 59, 7 (August, 2013), 351–360.
doi: 10.1016/j.sysarc.2013.05.023

[41] André van der Hoek & Marian Petre (eds). Software Designers in Action: a Human-
Centric Look at Design Work. Chapman and Hall/CRC, 2013.

[42] Brian Whitworth and Adnan Ahmad. The Social Design of Technical Systems: Build-
ing technologies for communities. 2nd Edition, The Interaction Design Foundation
https://www.interaction-design.org/literature/book/the-social-design-of-technical-
systems-building-technologies-for-communities-2nd-edition

[43] Robert Woodbury and Andrew L. Burrow. Whither design space? AI EDAM, 20(2),
63-82. doi:10.1017/S0890060406060057

[44] Wei Zuo, et al. Accurate High-level Modeling and Automated Hardware/Software Co-
design for Effective SoC Design Space Exploration. Proc 54th Annual Design Auto-
mation Conf 2017 (DAC '17). ACM, Article 78, 1–6. doi: 10.1145/3061639.3062195

8

