
Design Spaces and How Software Designers Use Them: 
a sampler 

Mary Shaw 
 School of Computer Science 
 Carnegie Mellon University 

 Pittsburgh PA, USA 
 mary.shaw@cs.cmu.edu 

Marian Petre 
 School of Computing and Communications 

 Open University 
 Milton Keynes, UK 
 m.petre@open.ac.uk

  

ABSTRACT 
Discussions of software design often refer to using “design spaces” 
to describe the spectrum of available design alternatives. This sup-
ports design thinking in many ways: to capture domain knowledge, 
to support a wide variety of design activity, to analyze or predict 
properties of alternatives, to understand interactions and dependen-
cies among design choices. We present a sampling of what 
designers, especially software designers, mean when they say “de-
sign space” and provide examples of the roles their design spaces 
serve in their design activity. This shows how design spaces can 
serve designers as lenses to reduce the overall space of possibilities 
and support systematic design decision making. 

CCS CONCEPTS 
Software and its engineering → Software creation and management 
→ Designing software → Software design engineering 

KEYWORDS 
Design spaces, software design, design exploration 

ACM Reference format: 

Mary Shaw and Marian Petre. 2024. Design spaces and how software de-
signers use them: a sampler. In Designing '24: 2024 International 
Workshop on Designing Software Proceedings. 8 pp.   
https://doi.org/10.1145/3643660.3643941 
 

1. What are design spaces? 
As Simon famously said, “Everyone designs who devises 

courses of action aimed at changing existing situations into pre-
ferred ones” [36]. We consider here design spaces, ways of 
describing existing situations and possible preferred ones, and the 
ways design spaces are used by software designers. Design spaces 
are widely used by designers in many domains. We draw on that 

broad experience to provide context, examples, and guidance for 
their use in software engineering. 

Design spaces embody the design alternatives for problem do-
mains or applications. In practical systems, both the design 
alternatives and the dependencies among the choices for those al-
ternatives are numerous and open-ended. This creates a dilemma 
for designers: how to reduce the intellectual complexity of the 
open-ended “space of possibilities” to something manageable by 
focusing on a subset of the complete space that is most helpful in 
the current state of the design, i.e., a “design space”. In identifying 
a design space, a designer chooses some perspective on the “space 
of possibilities” intended to help reduce the number of alternatives 
and dependencies, then navigates within that selected subset 
[4][9][23][28][43]. The different perspectives, like lenses, have a 
particular “focal range” or orientation (e.g., structured vs inte-
grated, as discussed in the sections that follow) that shapes both the 
priorities and the process of exploration.  
 

 
Figure 1: Distinctions among the space of all possibilities, the sub-
set of designs accessible in a design space, and the designs in that 
subset that are worthy of consideration. Not to scale.  

Woodbury and Burrow [43] recognize the vastness of the space 
of all design possibilities, with finite but incomprehensibly large 
numbers of possibilities, and with worthy designs a vanishingly 
small subset of the space. In such a setting, the problem is not 
whether a good design exists but whether it is accessible to a de-
signer searching the space. The full set of design alternatives is 
usually quite rich and quite interconnected, and a decision about 
one aspect of the design influences choices about other aspects. 
Schön says “A designer makes things.… Typically this making pro-
cess is complex. There are more variables—kinds of possible 
moves, norms, and interrelationships of these—than can be repre-
sented in a finite model” [29]. Hence design spaces are helpful—
but incomplete.  

Engineering practice includes both routine and innovative (also 
called normal and radical) design tasks; the former involve familiar 
problems and reuse of large portions of prior work, and the latter 
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calls for novel solutions to unfamiliar problems [30]. Within rou-
tine design the design spaces have arguably been well-mapped for 
well-scoped domains. Innovative design, by its nature, requires the 
designer to engage deeply with the alternatives. Hence the present 
discussion focuses on innovative design—including engagement 
with “wicked” problems that resist solution [25] —where the 
choice of design space and the nature of the designer’s engagement 
with design alternatives is instrumental1. 

Designers sometimes address the complexity of the design 
space by taking a structured approach, making simplifying assump-
tions to manage the complexity, for example by (provisionally) 
assuming independence of decisions or focusing on a few principal 
aspects of the design2. At other times, they undertake integrative 
exploration, keeping the dependencies front-of-mind as they ex-
plore their problem understanding and design options3. Broadly 
speaking, structured spaces tend to be associated with explicit 
knowledge; depth-first search of the design space; treatment of de-
cisions as independent; and reductionist reasoning. On the other 
hand, integrative design spaces tend to be associated with tacit 
knowledge; breadth-first search of the design space; attention to de-
pendencies among decisions; and holistic reasoning. In both cases, 
designers often revise the aspects under consideration as the design 
evolves4. The choice between integrative and structured lenses 
leads to different approaches to the design space, different repre-
sentations, and different uses5. 

These lenses are discussed in more detail in the sections that 
follow, with concrete examples from the literature both in software 
design and other domains. 

2. Structured design spaces for domains 
Some design processes create explicit, structured descriptions 

of the design alternatives. This often focuses primary attention on 
the design choices rather than the dependencies among these 
choices. They address the complexity of the design space by mak-
ing simplifying assumptions such as focusing—for the moment—
on a few of the most significant design decisions and their alterna-
tives; they may assume independence among the choices6. This is 
comparable to the engineer’s inclination to use linear models when-
ever possible: they’re simple, understandable, tractable, and often 
good enough7. 

This approach leads to design spaces with descriptions such as 
“The design space in which a designer seeks to solve a problem is 
the set of decisions to be made about the designed artifact together 
with the alternative choices for these decisions. … Intuitively, a de-
sign space is a discrete Cartesian space in which the dimensions 
correspond to design decisions, the values on each dimension are 
the choices for the corresponding decision, and points in the space 
correspond to complete design solutions” [33] 

                                                                 
1 Experts generate alternatives. #45 Petre and van der Hoek [24] identified 66 in-
sights/practices manifested by expert designers, based on empirical research. We call 
out relevant insights by their numbers. 
2 Experts solve simpler problems first. #2  
3 Experts keep options open. #30 
4 Experts reshape the problem space. #20 

A key to these examples is creating an explicit representation of 
the design decisions, the alternative choices, and perhaps the de-
pendencies. These examples show a variety of representations; 
each is presumably appropriate for its problem and might not be so 
for other problems8. Some are largely Cartesian, some are hierar-
chical, some are more complex. Some are graphical, some are 
textual, some are mathematical models. For some the alternatives 
are ratio-scale measures, for others some of the dimensions are on 
nominal or cardinal scales.  

Design spaces most often address the problem or requirement 
space (what the client needs) and the solution or implementation 
space (how the implementation will accomplish that). They may 
emphasize functionality, quality attributes, or value information. 

The vastness of the design space arises from the open-ended set 
of possible design decisions. Not only does this lead to combinato-
rial explosion, it flies in the face of conventional assumptions that 
specifications are complete and static. We therefore prefer the con-
cept of credentials that capture what you know now, evolve by 
adding new properties over time, and note the confidence in their 
correctness9 [31]. 

Designers use these design spaces in many ways (discussed 
briefly in the sections that follow), including: 
 Comparing and evaluating existing designs (Section 2.1) 
 Capturing domain knowledge (Section 2.2) 
 Mapping from problem space to solution space (Section 2.3) 
 Analyzing quality attributes (Section 2.4) 
 Performing tradeoff analysis in a well-understood domain 

(Section 2.5) 
Defining a design space explicitly entails selecting which di-

mensions to consider out of all the possible properties that require 
decisions. The goals of the design and intended use for the space 
should shape this selection, so the design dimensions of interest are 
highly dependent on context, and they are likely to change as the 
designer’s understanding of the problem evolves. This is a form of 
Schön’s “reflective conversation with the situation” [28]. 

2.1. Comparing and evaluating existing designs 
Design spaces can be used to compare existing designs, for cri-

tique, for evaluation, for selection among products10. This is less 
subject to the risk of oversimplification than other uses, because the 
current set of designs is known. 

At the Software Designers in Action workshop [41], numerous 
researchers undertook independent analyses of videos of pairs of 
designers at a whiteboard, each pair addressing the same design 
brief for traffic signal simulator. (N.B. An analysis from the work-
shop using a different lens is in Sec 3.1.) As one of the studies in 
this workshop, Shaw defined a design space to compare the design 
decisions made by the three teams, the choices implied by the 
prompt, and the decisions evident in a commercial product [33]. 
Figure 2 shows the diversity of choices made. For example, all three 
groups made different decisions about whether traffic signals 

5 Experts explore different perspectives. #46 
6 Experts design elegant abstractions. #5 
7 Experts prefer simple solutions. #1 
8 Experts invent notations. #28 
9 Experts draw what they need and no more. #26 
10 Experts look around. #14 
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should be most closely associated with roads, with intersections, or 
with an entity that connects roads to intersections; a commercial 
tool associated the signals with intersections. 

This representation of the design space emphasizes the dimen-
sions. Following Brooks [4], each major group of decisions is 
represented as a tree with two kinds of branches: choice and sub-
structure. Substructure branches (not tagged) group independent 
design decisions; choice branches, flagged with “##”, provide al-
ternatives. In some cases, the decision is a numeric value, and the 
choices are implicit. 

 
Figure 2: Part of the comparison of several designs for the traffic 
signal simulator, showing the decisions implied by the task state-
ment (boxed red text), made by the three teams (AD, IN, and MB), 
and made by a commercial product (highlighted in yellow) [32] 

In an example from another discipline, Römer and Mattern cre-
ated a design space to compare 15 implementations of wireless 
sensor networks [27]. They observed that the proliferation of such 
networks with vastly varying requirements and characteristics was 
making it increasingly difficult to have useful discussions within 
the community. They identified 14 major dimensions, most with 
two or more related subdimensions. 

                                                                 
11 Experts address knowledge deficiencies. #38 

Early superscalar hardware required register renaming to re-
solve performance bottlenecks. Sima studied a decade of register 
renaming techniques in 26 RISC and 14 CISC commercial super-
processors and identified a hierarchical design space with four 
major dimensions to help designers understand and explore this 
complex space [35]. 

2.2. Capturing domain knowledge 
Design spaces are sometimes defined to capture and explain 

knowledge about a domain, especially knowledge that will shape 
many designs of products11. Dimensions of the space are selected 
to highlight principal distinctions; accordingly, they tend to be 
fairly static, perhaps evolving as understanding of the domain 
evolves. However, different aspects of the domain may be signifi-
cant for different applications, so the dimensions should be selected 
with that breadth in mind. 

In the early development of software architecture styles, Shaw 
and Clements classified architectural styles in order to establish a 
uniform descriptive vocabulary, to explain carefully the distinc-
tions among styles, and to lay the groundwork for providing advice 
about choosing a style appropriate to a problem [34]. The resulting 
“Boxology” identified six major classes of styles: data flow, call-
and-return, interacting processes, data-centered repositories, data-
sharing, and hierarchical. Each of these had several specific vari-
ants, differing in their constituent parts and their data and control 
issues. Figure 3 shows a snippet of this space covering one of the 
major styles. 

Following the example of Lane’s design space for user interface 
components [20] (see Section 2.3), the Boxology work identified a 
few rules of thumb for style selection. For example, it suggested “If 
a central issue is understanding the data of the application, ... [and] 
if the data is long-lived, focus on repositories. If the input data is 
noisy and execution order cannot be predetermined, consider a 
blackboard.” [34]. 

 

 
Figure 3: Snippet of design space for software architecture styles, covering data-centered repositories. Columns correspond to dimensions 
of the design space [34] 
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2.3. Mapping problem space to solution space 
If both the desired properties of the design (i.e., the require-

ments) and the implementation alternatives are described by design 
spaces (that is, if both a problem space and a solution space are 
under consideration), it is attractive to look for a mapping that 
guides the designer from a region of the problem space to promis-
ing regions in the solution space12. 

Lane did this analysis for user interface software structures [20]. 
He interviewed designers of six software systems to discover the 
characteristics of the user interface components of their systems 
and the implementation choices they had made. Based on this, he 
created detailed functional and structural design spaces. Figure 4 
shows the principal structure of these spaces; the full functional 
space has 25 dimensions, each with 3 to 5 alternatives, and the full 
structural space has 19 dimensions, each with 2 to 7 alternatives. 
He developed a set of design rules for a recommendation engine 
that took as input a functional description and produced a ranked 
set of recommendations for the structural choices; he validated this 
statistically against the actual designs produced by his subjects. He 
also produced a set of over three dozen narrative design rules for 
use by human designers, e.g.: “High user customizability require-
ments favor external notations for user interface behavior. Implicit 
and internal notations are usually more difficult to access and more 
closely coupled to application logic than are external notations.” 

Figure 4. Overview of functional and structural design spaces for 
user interface structures [20]  

Baum et al. proposed an extension of Lane’s model as a design 
aid for software architecture [3]. They added correlations between 
dimensions in the functional and structural spaces to show strict 
dependence, incompatibility, or dependencies that create tradeoff 
decisions13. They also expressed design rules between the func-
tional and structural spaces as correlations.  

A design space for self-adaptive systems was developed by 
Brun et al. to guide designing such a system based on given require-
ments [5]. It identifies five clusters of design decisions related to 
control aspects of self-adaptive systems and represents them as 
questions to be answered by the designer. 

2.4. Analyzing quality attributes 
In addition to the largely-descriptive, largely-qualitative exam-

ples above, design spaces are also created and explored to analyze 
or predict quantitative or formal attributes of the designs. This is 

                                                                 
12 Experts draw the problem as much as they draw the solution. #25 

particularly challenging in modern systems that involve uncertain-
ties arising from lack of control over third-party components, 
physical components of cyberphysical systems, or human behavior.  

Cámara et al. developed a technique for making probabilistic 
guarantees about such systems [6][7]. Their design space is the set 
of possible software configurations that are defined by and gener-
ated from a formal model that includes structural constraints 
(architectural style) and application-specific constraints. They ex-
plore the design space by further filtering this set of configurations, 
for example with additional constraints, and quantifying the proba-
bilities of outcomes associated with quality attributes. Unlike most 
examples in this section, which are represented by explicitly enu-
merating alternatives, the Cámara design spaces are represented by 
formal models. 

2.5. Performing tradeoff analysis in a well-under-
stood domain 

Disciplines often share and compare results using a consensus 
model of a well-understood example. Historically, “stack” served 
this role for programming languages as did “dining philosophers” 
for synchronization algorithms and “lift” and “library” for interme-
diate-level software design. A shared design space can support this 
sharing with a concrete representation of the choices in a well-un-
derstood domain.  

In the domain of hardware/software co-design, a class of per-
formance-critical signal-processing problems involves configuring 
hardware-software allocation and parameterization for system-on-
a-chip (SoC) applications. “During system-level design space ex-
ploration (DSE), system parameters (e.g., the number and type of 
processors, and the mapping of application tasks to architectural 
resources) are considered. The number of design instances that 
need to be evaluated during such DSE to find good design candi-
dates is large … techniques are needed to optimize the DSE process” 
[40]. Solutions must balance tradeoffs among chip area, latency, 
and power [44].  

Approaches to achieving designs with better performance in-
clude genetic algorithms [37][40], parameter dependency for high-
level pruning with genetic algorithms to find a Pareto-optimal 
tradeoff subspace [21], and semi-random heuristics combined with 
integer linear programming [44]. Details of the design spaces may 
differ, but the point of view that performance optimization is cou-
pled to search space exploration is strong. The research is heavy on 
formalism and includes empirical results. 

Kang et al. addressed a similar problem of mapping tasks to de-
vices with a design space exploration technique that systematically 
eliminated equivalent candidates, based on a user-defined equiva-
lence [19]. This enabled them to generate the relevant candidates 
from the space in a cost-effective manner. 

3. Integrative Design Spaces 
Some design processes refer to working in a design space, but 

don’t represent the rich and complex space of alternatives explicitly. 
They often are more concerned with the design process that exposes 

13 Experts make tradeoffs. #34 

Functional Dimensions Structural dimensions 
1. External requirements 1. Division of functions & knowledge 
   a. Application characteristics    a. Application interface 
   b. User needs    b. Device interface 
   c. I/O devices 2. Representation issues 
   d. Computer sys environment    a. Means of user interface definition 
2. Basic interactive behavior    b. Representation of application info 
   a. Interface class    c. Data reps for communication 
   b. Flexibility of interaction    d. Representation of interface state 
         sequencing 3. Control flow, comm, synch issues 
3. Practical considerations    a. Control flow 
   a. Portability of applications    b. Communication mechanisms 
   b. Adaptability of UI system    c. Synchronization issues 
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and contrasts alternatives, than with the enumeration or representa-
tion of the alternatives per se. Hence Woodbury and Burrow [43] 
argue that design spaces and their representations are helpful—
maybe even necessary—tools, but that they should not dictate the 
design, which requires reasoning beyond representation details14. 
Integrative designs are concerned with a broad exploration of the 
design space(s), with a focus on identifying the key design consid-
erations—and with ongoing attention to the interactions among the 
design requirements and features, and the dependencies among the 
choices explored. Hence, the exploration prioritizes the “essence” 
of the problem and defers other elements15. Schön characterized 
this integrative approach [28]: “Let us search ... for an epistemol-
ogy of practice implicit in the artistic, intuitive processes which 
some practitioners bring to situations of uncertainty, instability, 
uniqueness, and value conflict”.16 

3.1. Co-evolution of problem & solution spaces 
Dorst and Cross studied nine professional designers working on 

a design for a litter disposal system for trains [14]. They found that 
the designers start by exploring the problem space and positing a 
partial solution17. They then explore the partial solution in the so-
lution space, which provides insights about the problem space as in 
Figure 5. Rinse, lather, repeat. 

 
Figure 5. Problem-solution space co-evolution [14] 

Curtis reported similar design behavior in software designers 
[10]. Guindon [17] found that designers bounced among levels of 
abstraction and developed mental models of the problem domain 
and the solution concurrently18. Figure 6 shows this, with Curtis’ 
overlay showing the expected attention of a waterfall model. This 
opportunistic behavior occurred even when a trained software de-
veloper attempted to do top-down development. Curtis observed 
that design insights reorganize the designer’s model of the problem 

                                                                 
14 Experts think about what they are not designing. #60 
15 Experts focus on the essence. #37 
16 Experts adjust to the degree of uncertainty present. #36 

domain, which creates new relations between the problem and so-
lution domains19. 

In one of the studies from the Software Designers in Action 
workshop [41], Tang et al. analyzed the effectiveness of the two 
teams’ design strategies [39]]. (N.B. An analysis from the work-
shop using a different lens is in Sec 2.1.) One of these strategies is 
problem-solution co-evolution, in which both the problem space 
and the solution space are developed and refined together; they as-
sociate this with the process of Figure 5. 

3.2 Tightly-coupled decisions 
Penders et al. [23] describe an exploration-based design strategy 

that identifies different design-space dimensions and uses inter-de-
pendency rules between those dimensions to make systematic 
design decisions. “Inter-dependency rules describe the influence 
design choices in one dimension have on other design dimen-
sions…” and “Inter-dependency rules indicate that, when limiting 
the choices in one dimension, there is a direct effect on possible 
design choices in its dependent dimension(s). Thus, inter-depend-
encies form a navigation guide for the designer, as they imply 
correlations between dimensions: after inspecting a design dimen-
sion a logical next step is to inspect dependent dimensions.” [23] 

Hence, the interactions between decisions are a principal focus 
of the design space analysis. Penders et al. argue that “One of the 
important advantages of the presented exploration-based design 
strategy is its ability to enforce a systematic decision for each di-
mension in the space” [23]. Figure 7 shows such inter-dependency 
rules in the context of hardware/software co-design. 

 
Figure 7. Dependency relationships among decisions [23] 

The richness of the interactions among decisions is well illus-
trated by an example outside of software engineering, the selection 
of resins for molding plastic parts [18]. Requirements for a molded 
part might include stiffness, dimensional stability, and resistance to 
UV; production requirements might include cost of resin, complex-
ity of molding process, and reliability of supplier. ”Resin properties 

17 Experts make provisional decisions. #31 
18 Experts move among levels of abstraction. #47 
19 Experts re-assess the landscape. #61 

 

Figure 6. Process map of a software design [17], overlay by [10] 
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influence part performance. … A gain in one property often coin-
cides with a loss in another … Every resin property required for an 
application influences material selection in varying degrees.” 

3.3 Implicit design spaces with coupled decisions 
Sometimes the important design decisions are related to keeping 

a system in balance, with an appropriate balance of resources. Here 
the explicit description of the design space may take a back seat to 
reasoning about the interactions, so the design space is implicit in 
the problem analysis20. Devereaux [11] considers such a case of 
logistic considerations for swift operational army maneuvers in the 
pre-gunpowder period, when “march fast” was the secret to major 
victories. The essential question is the relation between distance, 
speed, and force size for moving an army through enemy territory. 
Devereaux’ analysis goes through these steps: 
 The limiting factor is meeting nutritional demands; adult men 

need ~3000 calories/day [identified key factor: food] 
 Historically, this has worked out to ~3 lb of food per person 

per day, assuming water is available [new parameter: weight 
per person per day] 

 Marching loads are ~80-100 lbs per person with non-food load 
accounting for all but ~30lb, so ~10 days rations [new factor: 
food transport] 

 The duration can be extended by carrying additional supplies. 
In addition to food for soldiers, you need food for porters, or 
horses, or mules. In practice this can only extend the duration 
to ~40 days [relax the 10-day limit on food transport with a 
pack train, but at cost of more food and less speed] 

 More supplies can be acquired en route by foraging, but this 
has limited capacity and slows the movement; there is a 
tradeoff between short operational range at good speed and 
slower movement with unwieldy supply lines [new parameter 
for food transport, with associated costs] 

 The army will have many non-soldiers performing various du-
ties; this can range from 20% to nearly 100% more human 
mouths to feed, plus animals [discovered a new parameter, the 
“tooth to tail” ratio, the ratio of soldiers to support people] 

 Bigger armies are slower and harder to coordinate and secure 
[size affects speed] 

The analysis goes on in considerably more detail, but this sum-
mary already shows a design space with factors including food, 
weight of food per day, food transport, ratio of soldiers to noncom-
batants, and number of horses/mules; these are major determinants 
of size of army, rate of movement, duration in days, and operational 
range. These factors interact in ways that sharply constrain the fea-
sible points in the design space. 

4. How Designers Use Design Spaces 
As discussed, design spaces embody the design alternatives for 

problem domains or applications, providing different lenses on the 
design possibilities21. What emerges from the sample of design 
spaces is their role as tools for designers, assisting them: 
 To systematize understanding of the alternatives (scope and 

characteristics) (Section 4.1) 

                                                                 
20 Experts retain their orientation. #59 
21 Experts change notation deliberately. #49 

 To systematize navigation of the alternatives (exploration and 
decision processes) (Section 4.2) 

 To support orderly evolution of understanding (through the 
process of exploration) (Section 4.3) 

 To support the orderly reuse of prior art (when existing solu-
tions are appropriate) (Section 4.4).  

4.1 Systematize understanding of alternatives 
The examples demonstrate the utility of various design spaces 

in helping to identify key design considerations, alternatives, and 
the interactions between them. These may be known—or they may 
emerge as part of the design space exploration, or in the contrast 
between different design spaces. Hence, by helping designers ex-
ternalize (and hence examine) their understanding, design spaces 
help designers to check for coverage by prompting them to consider 
alternatives systematically within the space. On the other hand, the 
systematic exploration can help identify regions of the design space 
that are not currently relevant, feasible, or prioritized—helping to 
reduce the alternatives in a reasoned way. 

Schön [29] discussed this as problem framing: “In order to for-
mulate a design problem to be solved, the designer must frame a 
problematic design situation: set its boundaries, select particular 
things and relations for attention, and impose on the situation a co-
herence that guides subsequent moves.” 

4.2 Systematize navigation of the alternatives 
In order to achieve this understanding, designers need to navi-

gate the design space effectively and systematically. Many authors 
(e.g., Simon, Newell, Brooks) characterize design as search in a 
design space. Whitworth and Ahmad further characterize that 
search as choosing a point in the design space: “System design is 
choosing a point in a multi-dimensional design criterion space with 
many "best" points, e.g. a cheap, heavy but powerful vacuum 
cleaner, or a light, expensive and powerful one. The efficient fron-
tier is a set of "best" combinations in a design space. Advanced 
system performance is not a one-dimensional ladder to excellence, 
but a station with many trains to many destinations.” [42] 

That navigation—how designers explore the design space, and 
how they choose among alternatives—can take different forms, in-
fluenced not only by the design objectives but also, for example, by 
their domains, experience, representations, processes, etc. Com-
puter scientists are naturally inclined to view this search through an 
algorithmic lens, expecting systematic, orderly, potentially exhaus-
tive traversal of the search space. Brooks [4] notes the appeal of a 
rational model that systematically searches the design space but 
also observes that this model is vastly oversimplified: real design-
ers just don’t work that way 22 . In particular, designers often 
satisfice, stopping the search when an acceptable, if not optimal so-
lution is found23 . Guindon [17] found an opportunistic mix of 
breadth-first and depth-first search (see Figure 6). Brooks reports 
critiques by Cross [9], Schön [28], Akin [1], Royce [26] and others 
that show not only complex navigation of the search space but also 
evolution of the space itself as design proceeds. The aspiration to 
systematic and rational reasoning about design, and the pragmatics 

22 Experts use design methods (selectively). #17 
23 Experts know when to stop. #42 
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of working within the constraints of human cognition are the es-
sence of design space exploration; Dorst [12] still reported in 2006 
that the rational, systematic model still looms large in the field. 

The representation of the design space may also influence the 
way it’s navigated. A hierarchical representation in which each de-
cision shapes the alternatives available for future decisions tends to 
encourage making decisions in the order embedded in the hierarchy. 
“What remains unclear is to what extent such strategies are condi-
tioned by the external memory aids available to designers” [43]. 

4.3 Support orderly evolution of understanding 
Designers’ understanding of the design space evolves through 

the process of exploration. As Cross [8] reported: Schön [28] also 
pointed out that “the work of framing is seldom done in one burst 
at the beginning of a design process.” This was confirmed in Goel 
and Pirolli’s [15] protocol studies of several types of designers (ar-
chitects, engineers, instructional designers). They found that 
“problem structuring” activities not only dominated at the start of 
the design task, but also re-occurred periodically throughout the 
task24. This points to the interaction between the problem space and 
the solution space.  

As the understanding of the design space evolves, the process 
may reveal critical factors (or change the priorities of different fac-
tors) and/or reveal assumptions 25 . As a result, new possible 
solutions may emerge. Some of the examples highlight the con-
trasts between design spaces, and in particular the interchange 
between the problem space and the solution space. “Many studies 
of expert design behavior suggest that designers move rapidly to 
early solution conjectures, and use these conjectures as a way of 
exploring and defining problem-and-solution together”26 [8].  

Dorst asserts, “We urgently need a strong descriptive and ana-
lytical framework to help us understand what is actually going on 
in the “upwards jump” from solution to problem, and how we can 
safeguard against the misuse and manipulation of emergence” [13]. 

4.4 Support orderly reuse of prior art 
Although this discussion has prioritized innovative or radical 

design, design spaces play a key role in routine or normal design as 
well, where for each instance the task is selecting an established 
design from a well-defined family27.  

In typography, a designspace [sic] is an element of a typeface 
design that controls how a variable font’s appearance changes (by 
interpolation) as its variation axes 
are adjusted [16][38]. A variable 
font with weight and width axes has 
a 2-dimensional space, as in Figure 
8; some parametric fonts have 10 or 
more dimensions of variability. This 
allows users of the font to tune, but 
not to otherwise redesign, the font. 
Font designers, of course, use the 
designspace to represent the range 
of variability they intend [38]. 
                                                                 
24 Experts design throughout the creation of software. #22 
25 Experts are alert to evidence that challenges their theory. #57 
26 Experts make provisional decisions. #31 

In the domain of civil engineering, Pennsylvania mandates the 
use of the Bridge Automated Design and Drafting (BRADD) soft-
ware for new and replacement single span bridges [22]. This 
software automates the bridge design process from problem defini-
tion through contract drawings for specific types of simple single-
span bridges. The scope is concrete, steel, and prestressed concrete 
bridges with spans from 18 to 200 ft, with a variety of site-specific 
parameters. It offers 5 types of superstructures and 3 types of abut-
ments. It consists of 4600 Fortran routines (730,000 lines of code), 
590 dimensions/parameter/data files (92,500 lines of data), and 260 
graphic details containing 976 overlays, and a Visual Basic user 
interface of 83,000 lines of code. 

5. Conclusion 
We sampled the literature, primarily in software engineering 

and principally in system-level design, to find examples of how de-
signers use design spaces. This is not a comprehensive survey, let 
alone a systematic review. We reached for the low-hanging fruit, a 
set of examples rich enough to show the diversity of uses in practice. 
We included examples from other fields to emphasize that design 
spaces are integral to design generally, not specifically a software 
construct. This serves our main purposes: to raise the visibility of 
this design tool, to improve communication by clarifying its vari-
ous meanings, and to exhibit multiple uses that may stimulate 
further development. 

This sampler shows the wide diversity in content, representation, 
and use. The main point is the idea of structuring knowledge about 
a design; the specifics are tools that help designers think, not rigid 
rules that require adherence28.  

You, the reader, may use “design space” in yet another way. 
That’s fine, and some future extension of this work might include 
your use. You should, however, be aware of other ways that other 
people use the term so that you and they can communicate without 
confusion; the other examples may inspire you to extend your own. 

The designer’s principal responsibility is to understand the cli-
ent’s needs and commit to finding a solution that satisfies those 
needs. All of the models, methods, notations, representations, 
frameworks, and processes of software engineering—including de-
sign spaces—are tools to that end, not ends in themselves. The 
designer should select the ones that help with the problem at hand. 
These examples show that design spaces deserve their place in this 
toolkit, with details of their role in any particular design subject to 
the judgment of the designer. 
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27 Experts prefer solutions that they know work.#13 
28 Experts do not feel obliged to use things as intended. #23  
    Experts use notations as lenses, rather than straightjackets. #21 
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