Introduction to Large-Scale
Software Design

17-423/723 Designing Large-Scale Software Systems

Lecture 1
Jan13, 2025

Today’s Agenda

e Introduction and motivation for software design
e Course logistics

Learning Goals

After today’s lecture, you will be able to:

e Describe what software design is and why it is important

e Describe the risk-driven approach to software design

e Describe the generate-communicate-evaluate (GCE) paradigm to designing
software

e Describe the course logistics

Why design?

What is Design?

Dictionary
Definition

bverb

noun

!

1

Synonyms
Synonym Chooser
Example Sentences
Word History
Phrases Containing
Entries Near

: Show More v

(: Save Word I

de Sign 10t2 verh

de-sign (di-zin =)

designed; designing; designs

Synonyms of design >

transitive verb
1 :tocreate, fashion, execute, or construct according to plan : DEVISE, CONTRIVE

design a system for tracking inventory

2 a :to conceive and plan out in the mind
he designed the perfect crime
b :to have as a purpose : INTEND
she designed to excel in her studies
¢ : to devise for a specific function or end
a book designed primarily as a college textbook

a suitcase designed to hold a laptop computer

What is Design?

e (Verb.) To follow a process for planning how a product will work before it is
implemented

e (Noun.) The result of a design activity, such as design documents, sketches,
diagrams, which may serve as a plan for implementation

p
Requirements : . Testing and Deployment &
Gathering Besian mpiemeniation Validation Maintenance

A

Products

Engineering

IN

ign

Des

Software Design in Practice

e Systematic and deliberate design is less common in software industry
e Temptation is to start coding right away
o “Why bother with design? It's fine as long as it works!”
e Even if you skip deliberate design, you will end up with an implicit or “default”
design anyway
o But most likely, the default design is not going to have desirable qualities
of a successful product
o As a product/system grows more complex, the cost of improving the
design will also become more expensive
o No deliberate design => higher development costs in the long term!

Discovering Issues Early in Design

A
Relative cost to fix bugs,

20 based on time of detection

25x
20x
15x
10x

5x

0x

Requirements / z Integration / System(Production /
2 Coding « Acceptance
Architecture Component Testing Testing Post-release

US National Institute of Standards and Technology (NIST)

Consequences of Poor or “Default” Design

e Poor or lack of design can cause loss of customers, product failures,
injuries/deaths, property/environmental damage, or financial loss

e Throughout the class, we will use case studies of software failures (as well
as successes) to extract lessons and design principles

Risk-Driven Approach to Design

Why makes software design hard?

Reason #1: Design is less well-understood
by software engineers

e Design is often considered “art” or
“talent” rather than teachable skills

e This course is intended to change this
perspective! We will teach you design
principles and methods that will make
you a better designer

Why makes software design hard?

Reason #2: Requirements change frequently

e Your design may become obsolete over time

e But you can design systems to be ready for
such changes

e “Designing for change” will be a major theme
throughout the class

"The client kept changing the requirements
on a daily basis, so we decided to freeze
them until the next release."

Why makes software design hard?

Reason #3: Tension between deliberate
design vs. time-to-market

MOVE

e Pressure to release your product as
soon as possible FAS] AN“
e Often used as an excuse to avoid BH[AK

any deliberate design

THINGS

Why makes software design hard?

Reason #3: Tension between deliberate
design vs. time-to-market

e Pressure to release your product as
soon as possible

e Often used as an excuse to avoid
any deliberate design

e But as the system scales, it must
eventually deal with poor/lack of
design!

Risk-Driven Approach to Design

e What is the “right” amount of design to do?
e Risk = (cost of failure)*(likelihood of failure)

e Ask: What are possible costs to my organization/stakeholders if my
product/system fails?

Cost of a Possible Failure?

Cost of a Possible Failure?

p PNC PERSONAL SMALL BUSINESS CORPORATE & INSTITUTIONAL ABOUT @ Espafiol Customer Service Locations Security

PRODUCTS & SERVICES LEARNING SUPPORT OFFERS Q searcH

Checking &

Savings. Together.

Earn up to $400 when you set up a qualifying
direct %eposit(s) to a new Virtual
Wallet spend account.

Learn More & Apply

Cost of a Possible Failure?

Cost of a Possible Failure?

Risk-Driven Approach to Design

e What is the “right” amount of design to do?
e Risk = (cost of failure)*(likelihood of failure)
e Ask: What are possible costs if my product/system fails?

(@)

The amount of design should be proportional to the level of risks

e Cost of failure: Examples

O O O O

(@)

Loss of customers & revenue due to poor availability

Loss of customers & revenue due to poor usability

Extra development costs and project delays due to poor extensibility
Theft of sensitive information due to poor security

Injuries or loss of lives due to poor safety

e The goal is not to achieve a perfect product, but to identify & eliminate
‘bad” designs that are likely to result in high-risk failures

What does designing involve?

Types of Design

Conceptual design
o What are the key concepts in our system? What does the data model look like?
Functional design
o How are the key functionalities of the system implemented? What does the business logic
look like?
Architectural design
o What are the key components in the system? What are the interfaces between
components look like?
Interaction design
o How does the user interact with the system? How do we ensure that the system is easy
and intuitive for them to use?
Performance design
o How do we scale the number of users? How do we ensure high service uptime?

Security and reliability design

o How do we protect the system against malicious actors? How do we make system resilient
against possible failures in the network?

Quality Attributes

e Designis “easy’ if the only goal is to build a functional system

e Quality attributes (QAs) are what makes design challenging

o Often these are cross-cutting and in conflict with each other
o Designing will frequently involve making trade-offs among these quality attributes

e QAs that we will study in this class include:

Extensibility
Reusability
Interoperability
Testability
Scalability
Robustness
Security
Usability

and others...

0O 0O 0o 0o o o o o o

What do designers do?

Customer :v
Requirements

Final
Design

What do designers do?

What do designers do?

e Generate, brainstorm, and
explore a space of candidate
design solutions

What do designers do?

e Generate

e Communicate designs
to team members & clients
through design sketches,
documentation & prototyping

=3

i)

L L)

What do designers do?

e Generate

e Communicate

e Evaluate designs for
various quality attributes &
identify possible flaws

Generate-Communicate-Evaluate (GCE) Paradigm

Generate
Customer :r\l/ :C Final
Requirements Design

Evaluate Communlcate

We will cover a set of principles, techniques, and tools for generating,
communicating, and evaluating designs w.r.t. various quality attributes

Generate-Communicate-Evaluate (GCE) Paradigm

Generate
el — >
Requirements

Current
Design

Evaluate Communicate

oY S

Design is never “finished”; it's a continuous, iterative process!

Why take this course?

e Develop skills for a career as a system architect/designer
o “System design” questions are common in interviews for software
engineering positions

Why take this course?

e Develop skills for a career as a system architect/designer
o “System design” questions are common in interviews for software
engineering positions
e Role of Al/LLMs in software development
o Coding will be more and more automated

ChatGPT Will Replace
Programmers Within 10 Years

Predicting The End of Manmade Software

(o} Adam Hughes - Follow
‘\‘ Published in Level Up Coding - 12 minread - Feb 28

Why take this course?

e Develop skills for a career as a system architect/designer
o “System design” questions are common in interviews for software
engineering positions
e Role of Al/LLMs in software development
o Coding will be more and more automated
o Role of software engineers will likely change & involve more
high-level design
o Design skills and knowledge will become increasingly more valuable

Why take this course?

e Develop skills for a career as a system architect/designer
o “System design” questions are common in interviews for software
engineering positions
e Role of Al/LLMs in software development
o Coding will be more and more automated
o Role of software engineers will likely change & involve more
high-level design
o Design skills and knowledge will become increasingly more valuable
e For PhD & research-oriented students:
o Software design is still relatively less understood by researchers
o This course will discuss some open questions and opportunities
in software design research

What do we mean by “large-scale™?

e Not just in scalability in the number of users & requests, but also in terms of:
Complexity in the problem domain

Diversity in functional requirements and quality attributes

Number of interacting subsystems and components

Period of system evolution over time (potentially indefinite)

O O O O

Course Logistics

Course Staff

1 -
A /
\ . ok Office hours TBD;

Instructor Watch out for
Eunsuk Kang Shivam Bansal announcement

eunsukk@andrew shivamb@andrew after class!

Communication

e Email us or ping us on Slack (invite link on Canvas)

e Post questions on Slack

e All announcements through Slack #announcements and Canvas

e Submissions through Canvas & Gradescope

e Other non-public materials (readings) on Canvas

e Please use #questions or #assignments and post publicly if possible; your

classmates will benefit from your Q&A!

Disclaimer: Relatively New Class (Year 2)

e Expect rough edges & moving parts over the semester

e Please be flexible & patient!

e \We welcome your candid feedback! Let us know:

(@)

(@)

(@)

(@)

(@)

(@)

Topics that you'd like to us cover in more/less detail

Concepts that could be better explained

Tools/techniques that you'd like us to cover

An assignment that takes too much (little) time or is too hard (easy)
Readings that are too boring/obscure/hard to follow

And anything else, really!

e You have a chance to shape the future offerings of this course!

Course Learning Goals

After taking this course, you will be able to:

Design software systems for various quality attributes, including reusability, extensibility,
interoperability, robustness, scalability, testability, security, usability

Explain how to adapt a software design process to fit different domains, such as
robotics, web apps, mobile apps, and medical systems

|dentify, describe, and prioritize relevant requirements for a given design problem
Generate viable design solutions

Apply appropriate abstractions & modeling techniques to communicate and document
design solutions

Evaluate design solutions based on their satisfaction of common design principles and
trade-offs between quality attributes

Course Philosophy

e Hands-on Experience in a collaborative project
e Growth mindset & learning from failures
o Learning from real-world case studies
o Learning from your own mistakes in the project
e Active student participation
o We encourage you to ask questions and participate in class discussions

o Wrong answers support learning! (see growth mindset)

This is a Software Engineering Class!

e Focused on engineering judgment

e Arguments, trade-offs, and justification, rather than a single correct answer
e The answer will often be: "It depends..."

e Practical engagement, building systems, testing, automation

e Strong teamwork component

Pedagogical Principles in this Course

e Spaced Practice / Interleaving of Topics
o Practicing newly learned material is most effective when you started to forget about it
o Based on educational research, topics won'’t be covered in a single lecture, but spread
throughout the course
o Connections between different topics will become more clear this way!
e Active Learning
o Lectures are structured with many in-class discussions, think-pair-share, and other
activities
o Research shows that active learning is more effective, when when it doesn’t feel like that

See https://www.pnas.ora/doi/10.1073/pnas.1821936116

https://www.pnas.org/doi/10.1073/pnas.1821936116

Recitations

e Additional exercises to supplement concepts from the lectures

e Cover hands-on topics, such as tools, frameworks, best practices,
e First recitation this Friday!

e Participation in recitations will also be considered as part of “Class

Participation” grade (see later on Grading)

Grade Breakdown

e 20% Homeworks

e 50% Project

o 20% Midterm & final

e 10% Class participation
o In-class discussions

o Participation in recitation activities

o Exit tickets

Participation: Exit Tickets

e Goal: Recall and summarize the key ideas from the lecture
o Also to help us understand how well we conveyed those ideas
e In the last 5~10 min of each class, we will ask you to answer a couple of
quick questions about that day’s content (on Canvas)
e Not graded on correctness; any on-topic & “reasonable” answers will be
accepted
e 3 free passes throughout the semester

o Let us know if you have any exceptional circumstances (illness, travel,

interviews, etc.,)

Team Project

e Goal: Gain experiences designing, implementing, and iteratively improving a
complex software system

e Six milestones over the semester
o MH1: Initial design and specification
o M2: Initial prototype implementation
o Ma3: lterative design for changeability & interoperability
o M4: System integration
o Mb5: Iterative design for robustness
o M6: Final design report & presentation

e More details about the project next lecture

Individual Homeworks

e Goal: Practice applying design principles and techniques not covered by the
project milestones

e \We expect that these will take no more than 2~3 hours to complete

Grading: Tokens

e Individual & team tokens: 7 each

e Use 1 token to submit a homework assignment/project milestone 1 day late
e Use 3 tokens to redo a homework/milestone

e Unused individual tokens at the end of the semester will count towards your

participation grade

Participation: In-class Discussions

e Most lectures will involve case studies & discussions
e Please don't hesitate to contribute your ideas and experiences!

Remember, there’s no one “correct” answer to problems in this class

Use of Generative Al

e You are free to use generative Al (e.g., ChatGPT) for homeworks/project
o We are interested to explore the potential utility of LLMs for software design!
m Generate design alternatives, generate documentation, synthesize code
given a specification, etc.,
e But you are NOT allowed to use it for exams or exit tickets
e It's your responsible to check the quality of the output from an LLM
o These models will sometimes hallucinate and generate superficial, bogus output

e In your submissions, clearly document how you've used these tools

Looking Ahead

Next 2~3 weeks: Foundational techniques and tools for design
Domain & design modeling, quality attributes & trade-offs, generating design
ideas, design review, design processes

Second half of the course: Designing for quality attributes
Design for change, interoperability, reuse, scalability, robustness, security, Al,...

Slack Introductions

e Before Friday’s recitation, introduce yourself on #social channel:
o Your (preferred) name
o In 1~2 sentences, your software engineering background and goals (e.g.,
coursework, internships, work experience)
o Your favorite programming languages, tools, or frameworks
o One topic you are particularly interested in learning during this course?

o A hobby or a favorite activity outside school

Exit ticket!

e See Canvas

Summary

e Systematic design is common in many engineering disciplines.

e Decisions to invest in design should be driven by the amount of risks in the
product or system.

e Designers generate, communicate, and evaluate design solutions.

e Designing is a continuous, iterative process.

