
Introduction to Large-Scale
Software Design

17-423/723 Designing Large-Scale Software Systems

Lecture 1
Jan13, 2025

Today’s Agenda

● Introduction and motivation for software design
● Course logistics

Learning Goals

After today’s lecture, you will be able to:

● Describe what software design is and why it is important
● Describe the risk-driven approach to software design
● Describe the generate-communicate-evaluate (GCE) paradigm to designing

software
● Describe the course logistics

Why design?

What is Design?

●

What is Design?

● (Verb.) To follow a process for planning how a product will work before it is
implemented

● (Noun.) The result of a design activity, such as design documents, sketches,
diagrams, which may serve as a plan for implementation

Design in Engineering Products

Software Design in Practice

● Systematic and deliberate design is less common in software industry
● Temptation is to start coding right away

○ “Why bother with design? It’s fine as long as it works!”
● Even if you skip deliberate design, you will end up with an implicit or “default”

design anyway
○ But most likely, the default design is not going to have desirable qualities

of a successful product
○ As a product/system grows more complex, the cost of improving the

design will also become more expensive
○ No deliberate design => higher development costs in the long term!

Discovering Issues Early in Design

US National Institute of Standards and Technology (NIST)

Consequences of Poor or “Default” Design

● Poor or lack of design can cause loss of customers, product failures,
injuries/deaths, property/environmental damage, or financial loss

● Throughout the class, we will use case studies of software failures (as well
as successes) to extract lessons and design principles

Risk-Driven Approach to Design

Why makes software design hard?

Reason #1: Design is less well-understood
by software engineers

● Design is often considered “art” or
“talent” rather than teachable skills

● This course is intended to change this
perspective! We will teach you design
principles and methods that will make
you a better designer

Why makes software design hard?

Reason #2: Requirements change frequently

● Your design may become obsolete over time
● But you can design systems to be ready for

such changes
● “Designing for change” will be a major theme

throughout the class

Why makes software design hard?

Reason #3: Tension between deliberate
design vs. time-to-market

● Pressure to release your product as
soon as possible

● Often used as an excuse to avoid
any deliberate design

Why makes software design hard?

Reason #3: Tension between deliberate
design vs. time-to-market

● Pressure to release your product as
soon as possible

● Often used as an excuse to avoid
any deliberate design

● But as the system scales, it must
eventually deal with poor/lack of
design!

Risk-Driven Approach to Design

● What is the “right” amount of design to do?
● Risk = (cost of failure)*(likelihood of failure)
● Ask: What are possible costs to my organization/stakeholders if my

product/system fails?

Cost of a Possible Failure?

Cost of a Possible Failure?

Cost of a Possible Failure?

Cost of a Possible Failure?

● What is the “right” amount of design to do?
● Risk = (cost of failure)*(likelihood of failure)
● Ask: What are possible costs if my product/system fails?

○ The amount of design should be proportional to the level of risks
● Cost of failure: Examples

○ Loss of customers & revenue due to poor availability
○ Loss of customers & revenue due to poor usability
○ Extra development costs and project delays due to poor extensibility
○ Theft of sensitive information due to poor security
○ Injuries or loss of lives due to poor safety

● The goal is not to achieve a perfect product, but to identify & eliminate
“bad” designs that are likely to result in high-risk failures

Risk-Driven Approach to Design

What does designing involve?

Types of Design
● Conceptual design

○ What are the key concepts in our system? What does the data model look like?
● Functional design

○ How are the key functionalities of the system implemented? What does the business logic
look like?

● Architectural design
○ What are the key components in the system? What are the interfaces between

components look like?
● Interaction design

○ How does the user interact with the system? How do we ensure that the system is easy
and intuitive for them to use?

● Performance design
○ How do we scale the number of users? How do we ensure high service uptime?

● Security and reliability design
○ How do we protect the system against malicious actors? How do we make system resilient

against possible failures in the network?

Quality Attributes
● Design is “easy” if the only goal is to build a functional system
● Quality attributes (QAs) are what makes design challenging

○ Often these are cross-cutting and in conflict with each other
○ Designing will frequently involve making trade-offs among these quality attributes

● QAs that we will study in this class include:
○ Extensibility
○ Reusability
○ Interoperability
○ Testability
○ Scalability
○ Robustness
○ Security
○ Usability
○ and others…

What do designers do?

Customer
Requirements

Final
Design

Magic??

What do designers do?

What do designers do?

● Generate, brainstorm, and
explore a space of candidate
design solutions

What do designers do?

● Generate
● Communicate designs

to team members & clients
through design sketches,
documentation & prototyping

What do designers do?

● Generate
● Communicate
● Evaluate designs for

various quality attributes &
identify possible flaws

Generate-Communicate-Evaluate (GCE) Paradigm

Generate

CommunicateEvaluate

Customer
Requirements

Final
Design

We will cover a set of principles, techniques, and tools for generating,
communicating, and evaluating designs w.r.t. various quality attributes

Generate-Communicate-Evaluate (GCE) Paradigm

Generate

CommunicateEvaluate

Latest
Requirements

Current
Design

Design is never “finished”; it’s a continuous, iterative process!

Why take this course?
● Develop skills for a career as a system architect/designer

○ “System design” questions are common in interviews for software
engineering positions

Why take this course?
● Develop skills for a career as a system architect/designer

○ “System design” questions are common in interviews for software
engineering positions

● Role of AI/LLMs in software development
○ Coding will be more and more automated

Why take this course?
● Develop skills for a career as a system architect/designer

○ “System design” questions are common in interviews for software
engineering positions

● Role of AI/LLMs in software development
○ Coding will be more and more automated
○ Role of software engineers will likely change & involve more

high-level design
○ Design skills and knowledge will become increasingly more valuable

Why take this course?
● Develop skills for a career as a system architect/designer

○ “System design” questions are common in interviews for software
engineering positions

● Role of AI/LLMs in software development
○ Coding will be more and more automated
○ Role of software engineers will likely change & involve more

high-level design
○ Design skills and knowledge will become increasingly more valuable

● For PhD & research-oriented students:
○ Software design is still relatively less understood by researchers
○ This course will discuss some open questions and opportunities

in software design research

What do we mean by “large-scale”?

● Not just in scalability in the number of users & requests, but also in terms of:
○ Complexity in the problem domain
○ Diversity in functional requirements and quality attributes
○ Number of interacting subsystems and components
○ Period of system evolution over time (potentially indefinite)

Course Logistics

Course Staff

Instructor
Eunsuk Kang
eunsukk@andrew

TA
Shivam Bansal
shivamb@andrew

Office hours TBD;
Watch out for
announcement
after class!

Communication

● Email us or ping us on Slack (invite link on Canvas)

● Post questions on Slack

● All announcements through Slack #announcements and Canvas

● Submissions through Canvas & Gradescope

● Other non-public materials (readings) on Canvas

● Please use #questions or #assignments and post publicly if possible; your

classmates will benefit from your Q&A!

Disclaimer: Relatively New Class (Year 2)

● Expect rough edges & moving parts over the semester

● Please be flexible & patient!

● We welcome your candid feedback! Let us know:
○ Topics that you’d like to us cover in more/less detail

○ Concepts that could be better explained

○ Tools/techniques that you’d like us to cover

○ An assignment that takes too much (little) time or is too hard (easy)

○ Readings that are too boring/obscure/hard to follow

○ And anything else, really!

● You have a chance to shape the future offerings of this course!

After taking this course, you will be able to:

● Design software systems for various quality attributes, including reusability, extensibility,
interoperability, robustness, scalability, testability, security, usability

● Explain how to adapt a software design process to fit different domains, such as
robotics, web apps, mobile apps, and medical systems

● Identify, describe, and prioritize relevant requirements for a given design problem
● Generate viable design solutions
● Apply appropriate abstractions & modeling techniques to communicate and document

design solutions
● Evaluate design solutions based on their satisfaction of common design principles and

trade-offs between quality attributes

Course Learning Goals

Course Philosophy

● Hands-on Experience in a collaborative project

● Growth mindset & learning from failures

○ Learning from real-world case studies

○ Learning from your own mistakes in the project

● Active student participation

○ We encourage you to ask questions and participate in class discussions

○ Wrong answers support learning! (see growth mindset)

This is a Software Engineering Class!

● Focused on engineering judgment

● Arguments, trade-offs, and justification, rather than a single correct answer

● The answer will often be: "It depends..."

● Practical engagement, building systems, testing, automation

● Strong teamwork component

Pedagogical Principles in this Course

● Spaced Practice / Interleaving of Topics

○ Practicing newly learned material is most effective when you started to forget about it

○ Based on educational research, topics won’t be covered in a single lecture, but spread

throughout the course

○ Connections between different topics will become more clear this way!

● Active Learning

○ Lectures are structured with many in-class discussions, think-pair-share, and other

activities

○ Research shows that active learning is more effective, when when it doesn’t feel like that

See https://www.pnas.org/doi/10.1073/pnas.1821936116

https://www.pnas.org/doi/10.1073/pnas.1821936116

Recitations

● Additional exercises to supplement concepts from the lectures

● Cover hands-on topics, such as tools, frameworks, best practices,

● First recitation this Friday!

● Participation in recitations will also be considered as part of “Class

Participation” grade (see later on Grading)

Grade Breakdown

● 20% Homeworks

● 50% Project

● 20% Midterm & final

● 10% Class participation

○ In-class discussions

○ Participation in recitation activities

○ Exit tickets

Participation: Exit Tickets

● Goal: Recall and summarize the key ideas from the lecture
○ Also to help us understand how well we conveyed those ideas

● In the last 5~10 min of each class, we will ask you to answer a couple of

quick questions about that day’s content (on Canvas)

● Not graded on correctness; any on-topic & “reasonable” answers will be

accepted

● 3 free passes throughout the semester
○ Let us know if you have any exceptional circumstances (illness, travel,

interviews, etc.,)

Team Project

● Goal: Gain experiences designing, implementing, and iteratively improving a

complex software system

● Six milestones over the semester
○ M1: Initial design and specification

○ M2: Initial prototype implementation

○ M3: Iterative design for changeability & interoperability

○ M4: System integration

○ M5: Iterative design for robustness

○ M6: Final design report & presentation

● More details about the project next lecture

● Goal: Practice applying design principles and techniques not covered by the

project milestones

● We expect that these will take no more than 2~3 hours to complete

Individual Homeworks

Grading: Tokens

● Individual & team tokens: 7 each

● Use 1 token to submit a homework assignment/project milestone 1 day late

● Use 3 tokens to redo a homework/milestone

● Unused individual tokens at the end of the semester will count towards your

participation grade

Participation: In-class Discussions

● Most lectures will involve case studies & discussions

● Please don’t hesitate to contribute your ideas and experiences!

Remember, there’s no one “correct” answer to problems in this class

Use of Generative AI

● You are free to use generative AI (e.g., ChatGPT) for homeworks/project

○ We are interested to explore the potential utility of LLMs for software design!

■ Generate design alternatives, generate documentation, synthesize code

given a specification, etc.,

● But you are NOT allowed to use it for exams or exit tickets

● It’s your responsible to check the quality of the output from an LLM

○ These models will sometimes hallucinate and generate superficial, bogus output

● In your submissions, clearly document how you’ve used these tools

Looking Ahead

Next 2~3 weeks: Foundational techniques and tools for design
Domain & design modeling, quality attributes & trade-offs, generating design
ideas, design review, design processes

Second half of the course: Designing for quality attributes
Design for change, interoperability, reuse, scalability, robustness, security, AI,...

Slack Introductions

● Before Friday’s recitation, introduce yourself on #social channel:

○ Your (preferred) name

○ In 1~2 sentences, your software engineering background and goals (e.g.,

coursework, internships, work experience)

○ Your favorite programming languages, tools, or frameworks

○ One topic you are particularly interested in learning during this course?

○ A hobby or a favorite activity outside school

Exit ticket!

● See Canvas

Summary

● Systematic design is common in many engineering disciplines.

● Decisions to invest in design should be driven by the amount of risks in the

product or system.

● Designers generate, communicate, and evaluate design solutions.

● Designing is a continuous, iterative process.

