
17-423/723:
Designing Large-scale
Software Systems

Design for Interoperability
Feb 21, 2025

2

Learning Goals

• Describe the importance of interoperability as a quality
attribute of a software system

• Describe the difference between syntactic vs. semantic
interoperability

• Apply design principles for achieving semantic interoperability

Content partly based on a lecture by Tobias Dürschmid

3

What is Interoperability?

• A quality attribute describing how well a system communicates
and integrates with other systems

4

Apple has claimed that it continues to use Lightning because replacing it

would supposedly produce "an unprecedented amount of electronic waste".

Some reviewers...have posited that it is simply because Apple wants to

continue profiting from its proprietary chargers and accessories.

https://en.wikipedia.org/wiki/Lightning_(connector)

https://en.wikipedia.org/wiki/Lightning_(connector)

5

Mars Climate Orbiter
• Destroyed as it entered the

atmosphere

• $327.6 million loss

Trajectory Calculation
• A third-party component (by

Lockheed Martin) used

pound-force/seconds (lbf/s)
• NASA assumed

Newton/second (N/s)!
• This discrepancy remained

undetected prior to launch

6

100+ miles discrepancy in actual vs. estimated trajectories

7

https://kffhealthnews.org/news/death-by-a-thousand-clicks/

https://kffhealthnews.org/news/death-by-a-thousand-clicks/

8

Electronic Health Records (EHR)
• Many different EHR systems,

but lack of data sharing

• Manual entry by the nurse often
required to transfer patient data

between hospitals, pharmacies,
etc.,

• Data entry errors: A major

source of medical incidents!

9

Why Interoperability?

• Facilitate reuse: Allow a system to use existing services
instead of implementing their own (e.g., authentication, cloud
storage, payment services…)

• Improve usability: Allow users to bring/transfer their own data
from one system to another (e.g., export Google Docs to
Microsoft Word)

• Simplify integration: Allow independently developed systems
to interact without ad-hoc integration effort; reduce the
likelihood of errors during integration

10

Data Formats & Protocols

• Interoperability involves exchange of information between
systems developed by multiple teams or organizations

• Requires a shared data format and a common protocol

• Data format: How is the data structured?
• JSON, XML, CSV, YAML,…

• Protocols: How is the data sent/received?
• HTTP/HTTPS: Web-based communication

• gRPC: Microservices; highly efficient but less general than HTTP

• MQTT: Messaging for IoT devices

• SMTP/IMAP/POP3: E-mail clients.

• …

11

Data Schema

• Defines the structure, types, and constraints over data elements

• Enables data validation by enforcing the schema & detecting
errors in input/output data

{

 "$schema": "http://json-schema.org/draft-07/schema",

 "type": "object",

 "properties": {

 "user_id": { "type": "integer” },

 "name": { "type": "string" },

 "email": { "type": "string", "format": "email" },

 ”wage": { "type": ”integer", ”minimum": 20 }

 },

 "required": ["user_id", "name", "email"]

}

12

Representational State Transfer (REST)

• An approach for designing web applications

• Emphasis on uniform interfaces:
• Standard usage for HTTP methods (GET, POST, PUT, DELETE);

status codes for the request outcome

• Naming convention for URLs, based on resource identifiers

https://api.bookstore.com

GET https://api.bookstore.com/books/35

{ "id": 35,

 "title": "The Great Gatsby",

 "author": "F. Scott Fitzgerald",

 "year": 1925 }

Base URL

Request

Response

https://api.bookstore.com/
https://api.bookstore.com/books/35

13

Before REST

• “The Wild West” of the Web

• Many different protocols,
patterns, ad-hoc
conventions for APIs

• e.g., /getUser?id=123, vs.
/users/123

• Inconsistent use of HTTP
methods (e.g., POST for
everything)

• Clients must adapt to
specific individual API styles;
no universal standard!

14

Representational State Transfer (REST)

• An approach for designing web applications

• Emphasis on uniform interfaces:
• Standard usage for HTTP methods (GET, POST, PUT, DELETE);

status codes for the request outcome

• Naming convention for URLs, based on resource identifiers

• (Also: Stateless APIs - i.e., no server-side sessions)

• Once widely adopted, REST significantly improved the
interoperability of web applications

• Web apps, mobile apps, IoT devices, etc.,

• Clients can assume that REST APIs are structured the same
way; no need for API-specific convention!

15

Example: Flight Information System

• Q. What could go wrong with multiple systems
interpreting this data?

<flight>

 <flight_number>BA150</flight_number>

 <departure_date>03/07/2025<departure_date>

 <departure_time>15:30</departure_time>

 <arrival_time>18:45</arrival_time>

 <arrival_date>03/07/2025<arrival_date>

 <departure_airport>LHR</departure_airport>

 <arrival_airport>JFK</arrival_airport>

 <baggage_allowance>23</baggage_allowance>

</flight>

16

Syntactic vs. Semantic Interoperability

• Syntactic interoperability: Multiple
systems exchange data over a
shared format & a protocol

• Semantic interoperability: Multiple
systems exchange and assign a
common interpretation to data

• In most cases, syntactic
interoperability is not enough for
intended system functioning; we also
want semantic interoperability!

<plant>

17

Recall: Mars Climate Orbiter

Flight System Software
Developed by NASA JPL

Ground Software
Supplied by Lockheed Martin

(US-based sub-contractor)

Expected commands in

 N (SI units)

Sent commands in

lbf (US Customary units)
Command

Interface

Spacecraft lost due to lack of

semantic interoperability!

18

Semantic Interoperability: Design Principles

• Develop a shared ontology of data elements

• Support backward compatibility

• Use an existing, open standard if possible

19

Example: Public Transport Dataset

Adrian works for the Transport

Agency of MyCity and oversees

publishing data about public

transport. Adrian wants to publish this

data for different types of data

consumers such as developers

interested on creating applications

and for software agents. It is

important that both humans and

software agents can easily

understand and process the data,

which should be kept up to date and

be easily discoverable on the Web.

20

Develop a Shared Data Ontology

• An ontology defines concepts, their relationships, and
constraints in an application area of interest

• Sometimes also called a vocabulary

• Example: Ontology for public transit data

• Consider potential consumers of the ontology (users or
applications), use cases, and data needed to support them

https://gtfs.org/documentation/schedule/reference/

21

Public Transit Data: Who are the Consumers?

22

Electronic Health Records: Who are the Consumers?

23

Develop a Shared Data Ontology

• An ontology defines concepts, their relationships, and
constraints in an application area of interest

• Sometimes also called a vocabulary

• Example: Ontology for public transit data

• Consider potential consumers of the ontology (users or
applications) and their purposes

• Maintain a consistent, human-readable naming convention for
concepts & relationships

• Bad: usr_inf (confusing)

• Better: hasUserInformation (clear & readable)

https://gtfs.org/documentation/schedule/reference/

24

Develop a Shared Data Ontology

• An ontology defines concepts, their relationships, and
constraints in an application area of interest

• Sometimes also called a vocabulary

• Example: Ontology for public transit data

• Consider potential consumers of the ontology (users or
applications) and their purposes

• Maintain a consistent, human-readable naming convention for
concepts & relationships

• Use a data model to specify and communicate your ontology
to others (recall the lecture on design abstractions)

https://gtfs.org/documentation/schedule/reference/

25

Data Model for Public Transit Data

• Augment the data model with a textual description of data
elements and relations

26

Another Example: Brick Ontology for Buildings

https://ontology.brickschema.org/

https://ontology.brickschema.org/

27

Support Backward Compatibility

• The ontology that you’ve developed will likely change over time

• Backward compatibility: Can the existing systems continue to
use your ontology?

• Consider: “Can this change break the client’s code?”
• Adding a new data field – probably OK

• Removing/renaming, changing the meaning of a field – will likely break!

• Use API versioning to allow clients to transition between versions
• https://api.bookstore.com/books -> /books/v1/…, /books/v2/…

• Deprecate instead of removing data

HTTP/1.1 200 OK

Deprecation: true

Warning: "The 'username' field will be removed in API v3.0. Use 'email' instead."

https://api.bookstore.com/books

28

Use an Existing Open Standard

https://gtfs.org/

• If available, adapt a well-established, open standard

• Do not re-invent the wheel! It will cause more integration work
later for your team & others

https://gtfs.org/

29

Interoperability vs. Changeability

• Q. What is the relationship between interoperability vs.
changeability?

30

Interoperability vs. Changeability

• Recall: Interface segregation principle
• An interface should not force clients to depend on unnecessary details

• Interface pollution is a common risk of interoperability
• To be interoperable, a data schema/ontology may include more data

elements than needed by a single system

• Tends to result in a bloated ontology; multiple, partial implementations
of the schema (e.g., Google Transit implementation of GTFS)

• Another risk: Increased dependencies between systems
• If a data schema/ontology changes, all systems that depend on it may

be forced to change

• Supporting backward compatibility is crucial for changeability!

31

Interoperability: Takeaways

• Interoperability allows multiple systems to communicate and
integrate with each other

• Syntactic interoperability is the bare minimum; semantic
interoperability is often what is needed

• Interoperability can negatively impact changeability

• Not all systems may need to be interoperable! Like other qualities,
consider how crucial interoperability is to the successful of your
product (recall: risk-driven design!)

32

Team Project

• In a future milestone, you will develop a service that will be
used by multiple applications

• You will be asked to design an interoperable API with a well-
defined data ontology

• We will come back to the topic of interoperability in a few
weeks!

33

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3: What is Interoperability?
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Why Interoperability?
	Slide 10: Data Formats & Protocols
	Slide 11: Data Schema
	Slide 12: Representational State Transfer (REST)
	Slide 13: Before REST
	Slide 14: Representational State Transfer (REST)
	Slide 15: Example: Flight Information System
	Slide 16: Syntactic vs. Semantic Interoperability
	Slide 17: Recall: Mars Climate Orbiter
	Slide 18: Semantic Interoperability: Design Principles
	Slide 19: Example: Public Transport Dataset
	Slide 20: Develop a Shared Data Ontology
	Slide 21: Public Transit Data: Who are the Consumers?
	Slide 22: Electronic Health Records: Who are the Consumers?
	Slide 23: Develop a Shared Data Ontology
	Slide 24: Develop a Shared Data Ontology
	Slide 25: Data Model for Public Transit Data
	Slide 26: Another Example: Brick Ontology for Buildings
	Slide 27: Support Backward Compatibility
	Slide 28: Use an Existing Open Standard
	Slide 29: Interoperability vs. Changeability
	Slide 30: Interoperability vs. Changeability
	Slide 31: Interoperability: Takeaways
	Slide 32: Team Project
	Slide 33: Summary

