
17-723: Designing
Large-scale
Software Systems
Design for Testability

Tobias Dürschmid
(partially inspired by a lecture by Claire Le Goues)

2Designing Large-scale Software Systems - Design for Testability

This Lecture - Testability
• How to Design Testable Software?
• How to Test Quality Attributes?
• How to Increase Test Coverage?
• How to Tailor Testing to Different Domains?

Case Study: Netflix!

How to
Design Testable Software?

4Designing Large-scale Software Systems - Design for Testability

Definition of Testability

The degree to which the functionality and quality attributes of

a system (or component) can be assessed via run-time

observation. (i.e., How hard is it to write effective tests?)

Testing is nice; testability is better.
…because testing won’t make bad
code good, and you can’t test well if
the code itself is untestable.

Testability = Controllability + Observability

5Designing Large-scale Software Systems - Design for Testability

Controllability

How easy is it to provide a program or component with the

needed inputs, in terms of values, operations, and behaviors,

and bringing it into the desired state that should be tested.

Testability = Controllability + Observability

6Designing Large-scale Software Systems - Design for Testability

Observability

How easy is it to observe the behavior of a program or

component in terms of its outputs, quality attributes, effects on

the environment, and other hardware and software components.

Testability = Controllability + Observability

7Designing Large-scale Software Systems - Design for Testability

Testing a GDS-dependent Booking System

Airline 1

GDS

Airline 2

Airline 3

Booking
System

Request Flights
Book Flights

Register Flights
Sell Flights

Manage Passengers
Manage Baggage

System under Test (SUT)

Depended-on Component (DOC)
should not be exercised during testing

Question: What makes testing a booking
system that relies on GDS difficult?

8Designing Large-scale Software Systems - Design for Testability

Verifying indirect outputs is an Observability challenge

Injecting indirect inputs is a Controllability challenge

Indirect Inputs & Indirect Outputs
Make Testing more Difficult

Indirect Outputs

Indirect Inputs

Depended-on
Component

(DOC)

Direct Inputs

Direct OutputsTest
Component
Under Test

(CUT)

9Designing Large-scale Software Systems - Design for Testability

Indirect Outputs

Indirect Inputs

Depended-on
Component

(DOC)

Direct Inputs

Direct OutputsTest
Component
Under Test

(CUT)

DOCCUT

Indirect Outputs
Inputs

Indirect InputsOutputs

DOCCUT

Inputs
Indirect Inputs

Outputs Indirect Outputs

Indirect Inputs & Indirect Outputs
Can be Ordered in Many Different Sequences

10Designing Large-scale Software Systems - Design for Testability

Mock Component Pattern
Problem: How to observe indirect
outputs sent to separate DOCs?
Context: The connector between CUT
and DOC cannot easily be intercepted.
Solution: Create a Mock Component
that replaces the DOC and only
verifies the indirect outputs

ObservabilityIndirect Inputs

Depended-on
Component

(DOC)

Direct Inputs

Direct OutputsTest
Component
Under Test

(CUT)
Indirect Outputs

More Details here: http://xunitpatterns.com/Mock%20Object.html

Mock
ComponentIndirect

Outputs
CUT Verification

assert(…)

GDS

How to test that the booking system
correctly sends requests to GDS

without depending on GDS in the test?

Booking
System

REST

http://xunitpatterns.com/Mock%20Object.html

11Designing Large-scale Software Systems - Design for Testability

Test Spy Pattern
Problem: How to observe indirect
outputs sent to separate DOCs?
Context: The connector between CUT
and DOC cannot easily be intercepted.
Solution: Create a Test Spy
component that replaces the DOC and
forwards the indirect outputs to the test.

ObservabilityIndirect Inputs

Depended-on
Component

(DOC)

Direct Inputs

Direct OutputsTest
Component
Under Test

(CUT)
Indirect Outputs

More Details here: http://xunitpatterns.com/Test%20Spy.html

Test SpyIndirect
Outputs

CUT Data Collection

Test
Forwarding

GDS

How to test that the booking system
sends requests to GDS
in the correct order?

Booking
System

REST

http://xunitpatterns.com/Test%20Spy.html

12Designing Large-scale Software Systems - Design for Testability

Test Stub Pattern

More Details here: http://xunitpatterns.com/Test%20Stub.html

ControllabilityIndirect Inputs
Depended-on
Component

(DOC)

Direct Inputs

Direct OutputsTest
Component
Under Test

(CUT)

Indirect Outputs

Problem: How to control indirect inputs
sent from separate DOCs?
Context: The connector between CUT
and DOC cannot easily be intercepted.
Solution: Create a Test Stub
component that replaces the DOC and
sends the desired inputs to the CUT.

Test Stub

Indirect
Inputs

CUT Return
Values

Indirect
Outputs

How to test that the booking system
correctly handles GDS’s responses
(error response, empty response, …)?

Booking
System

REST
GDS

http://xunitpatterns.com/Test%20Stub.html

13Designing Large-scale Software Systems - Design for Testability

Test Spies, Mock Components, and Test Stubs
are all unified under the term Test Doubles

Test Double

Mock Component Test StubTest Spy

14Designing Large-scale Software Systems - Design for Testability

Design Principle for Testability:
Apply the SOLID Principles

Smaller pieces of functionality are easier to test.
Single Responsibility Principle (SRP)

Small interfaces reduce the effort to create test doubles.
Interface Segregation Principle (ISP)

Low coupling makes it easier to inject test doubles.
Dependency Inversion Principle (DIP)

→	

→	

→	

15Designing Large-scale Software Systems - Design for Testability

Is it easy to create and insert test stubs?

Is it easy to inject test inputs and test data into your software?

Controllability Checklist
Can you manipulate configuration settings easily during testing?

Are cyclic dependencies minimized to allow isolated deployment?

Are simulators or emulators available for environment behavior?

16Designing Large-scale Software Systems - Design for Testability

Can you detect & read messages sent between components?

Can you detect any change in the component state?

Observability Checklist
Can all component states be accessed by your tests?

Is it easy to create and insert test doubles?

Are logs generated for all critical events, errors, and warnings?

How to
Test Quality Attributes?

18Designing Large-scale Software Systems - Design for Testability

Recall – Quality Attribute Specifications

Scenario

Measure

Controllability

Observability

19Designing Large-scale Software Systems - Design for Testability

Testing Reliability

Scenario
1. The functionality that should be reliable

2. Considered deviations from normal conditions

Measure
The percentage of deviations that preserve the

functionality

Specifying Reliability Requirements:

In-Class Activity: How can we control the
scenario and observe the measure?

20Designing Large-scale Software Systems - Design for Testability

How does Netflix Test Reliability?
Killing
Random
services

How are
other services
impacted?

Is the restart
successful?

In-Class Activity: How can we generalize
these insights beyond Netflix?

Video Encoding
Service

Video Validation
Service

Complex Analysis
Service

21Designing Large-scale Software Systems - Design for Testability

Controllability

• Test Stubs inject deviations
• Injecting faults

• Simulating environment changes

Observability

• Check whether functionality is

preserved

• Functional assertions

• Ping/Echo or Heartbeat

Testing Reliability

22Designing Large-scale Software Systems - Design for Testability

Testing Performance

Scenario
1. Arrival of an event (e.g., request)

2. System’s response

Measure
1. Average / minimum / maximum

2. Latency / deadline / throughput / jitter / miss rate

Specifying Performance Requirements:

23Designing Large-scale Software Systems - Design for Testability

How does Netflix Test Performance?

In-Class Activity: How can we generalize
these insights beyond Netflix?

Video Validation
Service

Injecting
Latencies into
Components

Checking
Timeouts &
Retries

Injecting
Latencies into
Connectors

Video Encoding
Service

Complex Analysis
Service

24Designing Large-scale Software Systems - Design for Testability

Testing Performance
Controllability

• Inject the request

• Test Stubs inject indirect requests

• Test Stubs inject latencies to

analyze their impact

• Stress Test: Create high load

Observability

• Measure execution times

• Test Spies measure latencies for

indirect outputs

• Identify bottlenecks

25Designing Large-scale Software Systems - Design for Testability

Testing Security

Scenario
1. The functionality that should be preserved

2. The type of attack

Measure
How does the system respond to the attack

(prevented, time to detect / repair, …)

Specifying Security Requirements:

In-Class Activity: How can we control the
scenario and observe the measure?

26Designing Large-scale Software Systems - Design for Testability

Testing Security
Controllability

• Simulate the attack (e.g.,

injection of malicious inputs,

unauthorized access, …)

Observability

• Check whether functionality is

preserved

• Measure detection / repair times

27Designing Large-scale Software Systems - Design for Testability

Testing Availability

Scenario
1. The functionality that should be available

2. The operating conditions

Measure
Percent of uptime / time to repair / time to detect

and/or recover from partial unavailability

Specifying Availability Requirements:

In-Class Activity: How can we test availability
without waiting for a long duration?

28Designing Large-scale Software Systems - Design for Testability

Testing Availability
Controllability

• Injecting faults

• Create high-load situations

Observability

• Check when Components are
Responsive
• Ping/Echo or Heartbeat

• Extrapolate from data points

How to
Increase Test Coverage?

30Designing Large-scale Software Systems - Design for Testability

Exhaustive Testing is Impossible
We need to Find the Right Balance
Testing Effort

Test Critical
Functionality First

System- and and
Integration-Tests cover a
lot of code with less effort

Confidence
Complex Parts need more
tests

Confidence requires More
Assertions rather than just
covering more lines of code

Question: Why / when do we need
unit tests?

31Designing Large-scale Software Systems - Design for Testability

Monkey Testing / Random Testing
• Problem: Specifying many input-output relationships is too costly
• Context: A good foundation of traditional tests exist

Assertions in the code, monitoring component states, observe long latencies

Sample from the whole input space, try breaking the system, avoid repetition

Randomly Trigger Possible System Events

Check for Crashes and Undesired States

Question: Why can’t we have
ONLY monkey tests?

32Designing Large-scale Software Systems - Design for Testability

Metamorphic Testing
• Problem: Specifying many input-output relationships is too costly
• Context: A good foundation of traditional tests exist

Essential properties of the provided functionality

Sample from the component’s whole input space, avoid repetition

Test Random Inputs for the CUT

Verify Metamorphic Relations that should hold for Every Input

𝑥 𝑓(𝑥)

33Designing Large-scale Software Systems - Design for Testability

Examples of Metamorphic Relations
𝑥 𝑓(𝑥)

sin 𝜋 − 𝑥 = sin 𝑥 min(𝑎, 𝑏) = min 𝑏, 𝑎 	

Math App

tax(income) < tax(income + 1000) 𝑥 = USDtoEURO(EUROtoUSD 𝑥)

Financial App

objRecognition(img) = objRecognition(img +minorNoise)

Computer Vision Component

34Designing Large-scale Software Systems - Design for Testability

Examples of Metamorphic Relations
𝑥 𝑓(𝑥)

User changes the numbers in the table ⇒ numbers in other views change

Interactive Applications

Filtering by the price range or star rating returns a subset of the previous list

Online Shops

35Designing Large-scale Software Systems - Design for Testability

Metamorphic Relations In Web Apps

• Two searches for films with the same query should return the
same results regardless of the user profile (order might vary)

• After a user completed watching a movie it should not appear in
their recommendations anymore

In-Class Activity: Describe Metamorphic
Relations that might be observed in Netflix 𝑥 𝑓(𝑥)

36Designing Large-scale Software Systems - Design for Testability

Metamorphic Testing
• Problem: Specifying many input-output relationships is too costly
• Context: A good foundation of traditional tests exist

Essential properties of the provided functionality

Sample from the component’s whole input space, avoid repetition

Test Random Inputs for the CUT

Verify Metamorphic Relations that should hold for Every Input

𝑥 𝑓(𝑥)
Question: Why can’t we have ONLY

metamorphic tests?

37Designing Large-scale Software Systems - Design for Testability

Make the test pass with minimal coding effort,
potentially using simplifying shortcuts in the process

Make the design more elegant, cleaner, and potentially
faster while keeping the functionality

For your new requirement write a small test that fails,
and perhaps doesn’t even compile at first

Test-First Programming /
Test-Driven Development (TDD)

More in on this in ”Test Driven Development: By Example” by Kent Beck

Refactor Green

Red

Red

Green

Refactor

Question: Why is it not enough to
have only unit tests?

https://learning.oreilly.com/library/view/test-driven-development/0321146530

38Designing Large-scale Software Systems - Design for Testability

Write Tests Before Implementation!
Test-Driven Development (TDD)

Question: (How) does this work
for quality attribute testing?

Leads to more modular design due to focus on loosely coupled design

Finding bugs earlier saves time

Helps to keep focused on the current task

Guarantees testability and very high coverage of unit tests

Iterative approach does not work well for extremely complex behavior

Refactor Green

Red

How to
Tailor Testing to Different
Domains?

40Designing Large-scale Software Systems - Design for Testability

Case Study: Web Apps
Controllability

How to simulate user input

(e.g., clicking buttons,

entering text, waiting for

page to load, …)?

Observability

How to verify the output

(e.g., text on the webpage,

element is visible, …)?

Question: What challenges with Controllability &
Observability do we face?

41Designing Large-scale Software Systems - Design for Testability

End-to-end Web Testing Frameworks
await page.goto('https://playwright.dev/’);

await page.getByRole('textbox').fill('example
value’);

const getStarted = page.getByRole('link’,
{ name: ‘Submit' });
await getStarted.click();

See more detailed here: https://playwright.dev/docs/writing-tests

Page Navigation

Clicking a Link

Controllability

Entering Text

https://playwright.dev/docs/writing-tests

42Designing Large-scale Software Systems - Design for Testability

End-to-end Web Testing Frameworks
await expect(page.getByText('Welcome')).toBeVisible();

// At least one of the two elements is visible, possibly both.
await expect(
page.getByRole('button', { name: 'Sign in' })
.or(page.getByRole('button', { name: 'Sign up' }))
.first()
).toBeVisible();

const locator = page.locator('.title');
await expect(locator).toContainText('substring');
await expect(locator).toContainText(/\d messages/);

See more detailed here: https://playwright.dev/docs/writing-tests

Assertion for Visibility

Assertion for Text Content

Observability

https://playwright.dev/docs/writing-tests

43Designing Large-scale Software Systems - Design for Testability

Case Study: Mars Helicopter

Question: What quality attributes do we want to test? What
challenges with Controllability & Observability do we face?

44Designing Large-scale Software Systems - Design for Testability

Case Study:
Mars Helicopter

Controllability
How to simulate lower gravity?

How to simulate thinner
atmosphere and different

atmospheric composition?

45Designing Large-scale Software Systems - Design for Testability

46Designing Large-scale Software Systems - Design for Testability

Testing Robotics Systems

• Simulation can find some bugs, but is often not enough

• Huge space of potential inputs and environment conditions

• Stubbing computer vision components is especially challenging

• Record & replay of events can help minimize testing effort

47Designing Large-scale Software Systems - Design for Testability

Testing Mobile Apps
• Monkey testing is very popular

• Android has higher device-heterogeneity, leading to
challenges with controllability of code that depends on
hardware (e.g., GPU)

• Simulators are available to test software off-device

• Google offers Cloud Testing on actual devices

48Designing Large-scale Software Systems - Design for Testability

How does Testability Relate to Changeability?

Having many and good tests makes it easier to change code without
fearing to introduce bugs

Modular design makes it easier to write tests, due to fewer dependencies,

simpler interfaces, and better support for test doubles.

High Changeability Leads to High Testability

High Testability Leads to High Changeability

49Designing Large-scale Software Systems - Design for Testability

Please Complete the Exit Ticket in Canvas!

50Designing Large-scale Software Systems - Design for Testability

Summary

Credits: These slide use images from Flaticon.com (Creators: Freepik, kliwir-art, leremy)

• SOLID principle help to design easier testable software

• Controllability can be increased via Test Stubs

• Observability can be increased via Mock Components and Test Spies

• Coverage can be increased via Monkey Testing and Metamorphic Testing

• TDD helps to reach high coverage of unit tests while creating modular
software

More on testability in
“Software Architecture
in Practice” chapter 12

https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/
https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/ch12.xhtml

