
17-723: Designing
Large-scale
Software Systems
Design with Reuse

Tobias Dürschmid

2Designing Large-scale Software Systems - Design With Reuse

This Lecture - Reuse
• What are advantages of reusing existing modules?
• What challenges might arise from reusing existing modules?
• How to decide whether to reuse a module?
• How to reduce the risk of negative consequences of reuse?

Case Studies: Many!

3Designing Large-scale Software Systems - Design With Reuse

Code Reuse vs. Design Reuse
Code Reuse

Including modules written for a

different software in your own

code base

Design Reuse

Abstracting the core idea of an

implementation and transferring

it to the design of a similar
problem.

This Lecture Lecture 6 - Generate

4Designing Large-scale Software Systems - Design With Reuse

Code Reuse vs. Design Reuse
Code Reuse

• Packages & Libraries

• Frameworks

• Software Product Lines

Design Reuse

• Design Patterns

• Tactics

This Lecture Lecture 6 - Generate

5Designing Large-scale Software Systems - Design With Reuse

Why Reuse?

Reusing software can speed up software development, because time

for implementation and testing may be reduced.

Reused software, which has been tried and tested in working systems,

should be more dependable than new software, since most bugs have

likely been found already by other users of the module.

Higher Software Quality / Fewer Defects

Higher Productivity / Faster Time to Market

6Designing Large-scale Software Systems - Design With Reuse

The Vision of Reuse: Creating New Software
Mostly by Composing Existing Building Blocks

Library 1 Library 2 System Design

Well-organized libraries of modules that
are highly compatible with each other.

7Designing Large-scale Software Systems - Design With Reuse

The Reality of Reuse: Modules are Partially
Incompatible But Often Still Glued Together

Library 1 Library 2

Cluttered libraries of modules that make
many undocumented assumptions

Module
Module

Module

Mo
du
le

Module
Module

GLUE

8Designing Large-scale Software Systems - Design With Reuse

Reuse must be Approached Differently
Depending on its Source

Internal Reuse

Code was written by the same

developer, team, or

organization that is reusing it

(e.g., product lines, component-

based development process, …)

External Reuse

Code was written by a third

party.

(e.g., commercial off-the-shelf,

open-source libraries, packages,

frameworks)

How to
Design with
External Reuse?
Designing Large-scale Software Systems - Design With Reuse

10Designing Large-scale Software Systems - Design With Reuse

Reusing 3rd Party Packages
Can Be Challenging
Most common complaints by ROS Developers:
“The package was for an outdated ROS distribution”
“I could not figure out how to use it” (lack of documentation)
“There was a bug that prevented the package from working
properly”
“I did not succeed in configuring the package for my use case”
See “The Robot Operating System: Package reuse and community dynamics” (Estefo et al. 2019)

https://www.sciencedirect.com/science/article/pii/S0164121219300342

11Designing Large-scale Software Systems - Design With Reuse

The Python Ecosystem Is
Built on Reuse
Most commonly needed functionality is
already implemented in a reusable way

Importing & getting started with
reusable modules is quite easy

12Designing Large-scale Software Systems - Design With Reuse

Context: No source code changes
Python’s docker package imports the request
package and the urllib3 package

Error Message: docker.errors.DockerException: Error while
fetching server API version: request()
got an unexpected keyword argument 'chunked'

Root Cause: urllib3 2.0.0 just released today! And it changed its API
to be incompatible with docker

// in request package

httplib_response
= self._make_request(
 conn,
 method,
 url,
 timeout=timeout_obj,
 body=body,

headers=headers,
chunked=chunked,

)

Example: Python Package Update
Has API-Breaking Change

What can we learn from this example?

13Designing Large-scale Software Systems - Design With Reuse

Design Principle: Keep Versions of Your
Dependencies Fixed
• Most package managers allow you to

specify the versions of dependent

packages & install them in a virtual

environment locally to the project

• E.g., Python: Use Pipenv & Pipfiles

Example Pipfile

[packages]
flake8 = "==3.8.2”

[dev-packages]
flake8 = "==3.8.2"
pep8-naming = "==0.10.0"
mypy = "==0.910"
pytest = "==5.4.2"
tox = "==3.15.1"
coveralls = "==2.0.0"

[requires]
python_version = "3.9"

https://pipenv.pypa.io/

14Designing Large-scale Software Systems - Design With Reuse

Heartbleed Bug in OpenSSL

Included insecure implementation
of Heartbeat leading to a buffer
over-read, leaking memory data

Component A Component B
Encrypted Connection via SSL/TLS

Introduced in February 2012
Discovered on 1 April 2014
Fixed version released on 7 April 2014

7 April 2014 17% of all secure web servers vulnerable
20 May 2014 1.5% of the most popular TLS-enabled websites still vulnerable
January 2017 180k internet-connected devices still vulnerable
July 2019 91k devices still vulnerable

What can we learn from this bug?

15Designing Large-scale Software Systems - Design With Reuse

Design Principle: Update Your
Dependencies To Receive Bug Fixes
• Defects in popular modules are usually fixed quickly

• Reusing well-maintained modules can improve your

software quality

• Be aware of side effects of updates (see previous example)

16Designing Large-scale Software Systems - Design With Reuse

left-pad – A Simple and
Highly Reused NPM Package

Most Modern
Web Apps

module.exports = leftpad;
function leftpad (str, len, ch) {

str = String(str);
var i = -1;
if (!ch && ch !== 0) ch = ' ';
len = len - str.length;
while (++i < len) {

str = ch + str;
}
return str;

} left-pad

left-pad adds characters in
front of a string for alignment
in 11 lines of code.

Transitively, it is used in big
popular packages (e.g., React,
Bable), which are used by
most modern web apps.

Stars on Github: 10
Time to Implement: ≈ 2 min
Weekly downloads: ≈	1 million

17Designing Large-scale Software Systems - Design With Reuse

left-pad – How Reusing Just
11 Lines Broke the Internet

Most Modern
Web Apps

March 23, 2016: The author of left-pad
decides to un-publish all his packages npm ERR! 404

'left-pad' is
not in the npm
registryBuild processes for web apps across the internet

broke due to the missing package

Many developers did not even know that they
were transitively relying on left-pad

Read more here: https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/

https://www.davidhaney.io/npm-left-pad-have-we-forgotten-how-to-program/

18Designing Large-scale Software Systems - Design With Reuse

Learning from the left-pad
story, Describe Rules that
Support Design With Reuse

Most Modern
Web Apps

return toString.call(arr) ==
'[object Array]';

isArray
Stars on Github: 129
Time to Implement: ≈ 1 min
Weekly downloads: ≈	92 million

How should we decide

what to reuse?

How can we minimize the risk

of reuse?

19Designing Large-scale Software Systems - Design With Reuse

Design Principle for Design With Reuse:
Strive for Fewer Package Dependencies
• Avoid reusing trivial code, especially from unreliable sources

• Carefully consider adding new package dependencies

• Every dependency can break, or stop being supported

• Package dependencies can become a security vulnerability

(e.g., eslint-scope malicious update)
See https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

https://github.com/eslint/eslint-scope
https://eslint.org/blog/2018/07/postmortem-for-malicious-package-publishes/

20Designing Large-scale Software Systems - Design With Reuse

Modules with higher Maintenance Level &
Popularity Are more Viable Reuse Candidates

• How actively does the development team fix bugs and update
the module to support new platforms?

• Popular packages with many users are more likely to resolve
issues quickly & have better documentation

• However, fit to your context is more important that popularity!

21Designing Large-scale Software Systems - Design With Reuse

Lesson Learned: External Reuse
Is Not a One-Time Investment!
• Important updates (e.g., fix security vulnerabilities) might come with

API-breaking changes if you have skipped previous versions.

• Poorly maintained packages might require you to abandon them later

• Relying too much on reused code limits changeability once you need

more than what the library offers.

Key-Takeaway from Previous Examples

Apply Design for Change

22Designing Large-scale Software Systems - Design With Reuse

Java Streams are Highly Reusable
OutputStream

Checked
OutputStream

Cipher
OutputStream

Zip
OutputStream

Data Compression Data Integrity via
Checksum Data Encryption

Transfers data between
two components

23Designing Large-scale Software Systems - Design With Reuse

What makes Java Streams so Useful?

• Many Different Implementation of a very Common Interface
• Supporting Information Hiding & Changeability

• Many domain-independent Reuse Scenarios

• Different Stream Implementations can be Combined!
Thanks to the Decorator

Design Pattern

24Designing Large-scale Software Systems - Design With Reuse

Cost-Benefit Analysis for External Reuse
Effort saved reusing
the module
Implementation Effort

Testing Effort

Benefit of Update
Propagation

Integration Effort
(Complexity, Similarity
of Context)

Updating Effort

Limiting Changeability

Effort to adapt the
reusable module

25Designing Large-scale Software Systems - Design With Reuse

In-Class Exercise: Should you Reuse?
Context: Building an appointment scheduling system
Which of these packages are good reuse candidates? What are
pros and cons of reusing them?

icalendar
Generates, parses, and
manipulates iCalendar data to
send invitations to users

python-constraint
Provides a simple constraint
satisfaction problem solver in Python
to identify a scheduling solution for
multiple users

How to
Design with
Internal Reuse?
Designing Large-scale Software Systems - Design With Reuse

27Designing Large-scale Software Systems - Design With Reuse

NASA Heavily Relies on Internal Reuse
• Problem: Creating appropriate integration & system-level tests

for space craft software is difficult on Earth
• NASA’s Solution: Only trust software that has worked in space

Tested in Space Tested on Earth

28Designing Large-scale Software Systems - Design With Reuse

Ariane 5 Failure
Ariane 4 Flight Control System

Horizontal Velocity - 16 Bit Int

Ariane 5 Flight Control System

Horizontal Velocity - 16 Bit Int

Worked
Perfectly!

Caused Self-
Destruction

Assumed
lower velocity

Can reach higher velocities
than Ariane 4

Overflow Error

See http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

What can we learn from
this example?

Due to
Performance
Requirement

http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

29Designing Large-scale Software Systems - Design With Reuse

Lesson Learned from Ariane 5
Software that
Worked in one Context
Might Not Work in Another Context

See https://www.esa.int/Newsroom/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report

Based on This Example, Describe Rules
that Support Design With Internal Reuse

https://www.esa.int/Newsroom/Press_Releases/Ariane_501_-_Presentation_of_Inquiry_Board_report

30Designing Large-scale Software Systems - Design With Reuse

Design Principle for Internal Reuse:
Identify Violated Assumptions
• Check documentation and code to identify assumptions made by reuse

candidate

• Check to make sure that reusable software was designed to operate

reliably under the conditions you want

• Don’t assume the code of the reuse candidate is correct, test it!

31Designing Large-scale Software Systems - Design With Reuse

Consider Whether the Systems will
Evolve Together or Separately

System 1

System 2

System 1’

System 2’

System 1’’

System 2’’

A change to a reusable module impacts all systems that reuse it.
Reuse is viable if the requirements of reusing systems change together.

32Designing Large-scale Software Systems - Design With Reuse

Separate Evolution makes Reuse
Less Efficient and/or Error-Prone

Ariane 4

If systems evolve separately, consider versioning the module or
“clone & own” (duplicating the code to allow independent evolution)

Horizontal Velocity - 16 Bit Int

Ariane 5

Horizontal Velocity - 16 Bit Int

Ariane 4’

Horizontal Velocity - 32 Bit Int

Ariane 5’

Horizontal Velocity - 32 Bit Int

Does not satisfy
Performance
Requirements

New
Version

33Designing Large-scale Software Systems - Design With Reuse

Cost-Benefit Analysis for Internal Reuse
Effort saved reusing
the module

Implementation Effort

Testing Effort

Benefit of Update
Propagation

Identification of Implicit
Assumptions

Potential of Separate
Evolution

Effort to adapt the
reusable module

34Designing Large-scale Software Systems - Design With Reuse

Scientific Evidence for
Real-World Benefits of Reuse

See “What software reuse benefits have been transferred to the industry? A systematic mapping study” (Barros-Justo et al. 2017)

Higher Code Quality

Higher Productivity

Internal Reuse External Reuse

?
?

https://www.sciencedirect.com/science/article/pii/S0950584918301083

35Designing Large-scale Software Systems - Design With Reuse

Please Complete the Exit Ticket in Canvas!

