17-423/723:
Designing Large-scale
Software Systems

Design Reviews
Mar 10, 2025

Logistics

* M3 released

* Wednesday'’s lecture: Class-wide activity
* Please make sure every team member is present!

Leaning Goals

* Devise and document an argument for why the design achieves a
desired function or quality attribute

* Review and identify weaknesses in an existing design argument

Design Review

* An activity for evaluating a design against system requirements

« Check whether a product (designed or implemented) achieves its
expected functionality and quality attributes

« |dentify potential issues to be addressed
« An important part of a software development process in practice

* Not the same as code review!
* Design review: Focus is on higher-level design decisions

« Code review: Focus is on the guality of the source code (e.g.,
correctness, readability, etc.,)

Design Review In Practice

how people how it’s
see it really done

,.
‘ it's donel... ‘, =

system
limitations

review 3

' ¢ ----o.
| @ =
I \{_§ /'q Q

review 1 . change of

I functionality @ _ __
] =0

@® start start @ — ~

user testing

- 3

-

by Gene Rock as @uxgene

Design Review at Google

Q 6 e & A 100% ~ Normal text ~ Arial -~ -|[n|+ B I U A 2 o (] =< .
v 3] Assigned to Ben Greenberg v

. nflinnSZnnaflnnnitnnnflonnéonnilonninnnllonnfonnflonnilonnllonetlonnSenaalls

Requirements

. Celal Ziftci
« Automatically book gym two days in advance, at midnight .]
o The program needs no human interaction after started, should be fault tolerant and 3:07PM TOda\/
reasonably retry

e The program runs on a Mac @greenbben@google.com

e User can specify username, password, the sport to book, date and time to book, etc

Non-goals: .
o Book only 1 or 2 days in advance, or for the current day Please review and a pprove before

Tolerant to OS or network issues

e Functioning if booking server is down | start with the implementation.
e Functioning if website structure(HTML) changes

Assigned to Ben Greenberg

High-level design

Browser automation V.S. request simulation

Browser automation is using a program to control a real browser and automate the operation on

the GUI. Request simulation is having the program talking with the server via HTTP, as if it is a ([] WI d e I e rfo rm e d at G O O I e
web browser, rather than controlling one.
Browser automation is preferred over request simulation. The considerations are: . . .
e [pros] Browser automation started a real browser instance so we know what's going on) D e S I g n d O C S ar e er tte n u S I n g
when the program runs, it makes debugging and development much easier
e [pros] The website requires javascript to load the controls, this is hard to implement
programmatically, may need to control some rendering engine G I D
[cons] Browser automation depends on the HTML structures while request simulation O O g e O CS

depends on the HTTP APlIs. APIs are far less likely to change.

e Stakeholders leave comments

Improving Design Reviews at Google. directly on the docs
Ziftci & Greenberg. IEEE/ACM ASE (2023).

Request for Comments (RFC)

« A common type of document used for design proposals and reviews

* Describes a design proposal/decision, why it is needed (i.e., goals),
how it works, and alternatives considered

* Frequently used by technical committees for network protocols and
standards (e.g., HTTP, TCP/IP, OAuth...)

 But also used within tech organizations to document and review
major design/product proposals

 Example: A sample RFC at Sourcegraph
* (More examples)

https://docs.google.com/document/d/15XJnQ-qa-Y3SM2eltuKfuESmgYYfx7JhEdi2447YF_0/edit?tab=t.0
https://blog.pragmaticengineer.com/rfcs-and-design-docs/

Challenges with Design Reviews
REVIEWSHIOMLINES OF CODE: FINDS

S HONSSUES.

o <
e \ .

™

-

REVIEWS: 500/LINESOF CODE:

"

%L 00KSIGOOD, T0-MEX

made with men

Documenting for Design Reviews

» Code is a poor abstraction for understanding why/how design works
* To faclilitate a design review, design decisions must be documented

* We have already discussed different notations for documenting a
design:
« Context (domain) models
« Component diagrams
« Data models
« Sequence diagrams

 But these notations don't explicitly say why the design decisions
were made, and how they support the system in achieving desired

quality

Today’s Class

* Design argumentation: Devising and documenting an explicit
argument for why the system design achieves its expected
functionality

* Design review: ldentifying weaknesses in the argument &
suggesting ways to improve the design

Design Arguments

Arguing why your design works

1° INDETERMINATE BEAM l}’ lQ
A C E

A b & 0 B

Free Bopy Diagram

External —
lPJ Forces lQ
A C E
> ;
A, B D
4 «——Reaction———__| ¢ Reaction—.| ¢ Ul - i g

J Forces ’ Force s | | B 1] i T =
| L il J il

d!l[l

External
ExTERNAL FORCES

WiTHOUT REDUNDANT lp‘-"/_ Forces ________’lQ

A C E

T ‘_/E//—— Partial —*T
A E
¥l

» Reaction Force

REDUNDANT +
Force ONLy Partial Partial
A (‘Reaction Force C Reaction Force-w E

ot T G

»
ReEDpUNDANT FORCE ——

But in software...

“Software is like a cathedral; first we build it,
and then we pray.” — Sam Redwine

Design Argumentation

» Goal: Argue “why my design works”

« An argument is often implicit and
Incomplete in the designer’'s mind

* If you can’t produce a strong argument,
how do you know that your system
WOrks?

* Allow another person to review &
identify weaknesses in the argument

« One approach: Assurance case

« Assurance: The process of
demonstrating that the system will
function and satisfy its quality attributes
as intended

THE STRENGTH OF ARCHITECTURE

Why Buildings

Assurance Case

« An explicit argument that a system achieves a desired requirement,
along with supporting evidence

« Claim: A statement about a piece of functionality or quality attribute
of the system

« Argument: A top-level decomposed into multiple, hierarchical
subclaims

* Evidence: A documented piece of evidence that supports a leaf
subclaim

« Results of testing, software analysis, formal verification, inspection,
expert opinions, architecture design

* Must be auditable & verifiable independently by a third party

Assurance Case: Structure

Claim1

Claim2

N

e

Claim4
\ _
Claim3

\/—v\
Argument

IF @ THEN Claim1; IF O THEN Claim2; IF@THEN Claim3:
IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

xample: Sidewalk Delivery Robot

OpmTneT-

Sepraees

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
piece of desired functionality or a quality attribute

* The intrusion detection system notifies the homeowner in time when a
stranger appears around the house (functionality)

* The movie streaming app delivers its content at 1080p resolution with
less than 1 second buffering event (performance)

* The stock tracker app can be extended with new types of output format
without impacting the rest of functionality (changeability)

* The sidewalk robot avoids collision with pedestrians (safety)

Assurance Case: Delivery Robot

Claim: Sidewalk robot
avoids collision with
pedestrians

The claim

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
niece of desired functionality or a quality attribute

2. ldentify one or more subclaims to support a higher-level claim.
* Logically, "If all the subclaims hold, then their parent claim also holds”
« Each subclaim can, in turn, be decomposed into further subclaims

« Each leaf-level subclaim describes (1) the responsibility of a software
component or (2) an assumption about a domain entity

Assurance Case: Delivery Robot

Subclaim: Sidewalk Subclaim: Sensor
robot detects pedestrians - '

Claim: Sidewalk robot /| on time provides accurate data

avoids collision with

pedestrians Subclaim: Robot stops Subclaim: Controller
before colliding with generates breaking
detected pedestrians commands on time

The claim The argument

Assurance Case: Delivery Robot

Domain
Assumption
Subclaim: Sidewalk Subclaim: Sensor
robot detects pedestrians - '
Claim: Sidewalk robot /| on time provides accurate data
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller
before colliding with generates breaking
detected pedestrians commands on time Component
responsibility
The claim The argument

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
niece of desired functionality or a quality attribute

2. ldentify one or more subclaims to support a higher-level claim.

3. For each leaf-level subclaim, provide a piece of evidence to
support the claim

* Results of testing or program analysis (e.g., “The app successfully
handled stress testing with 1,000 user requests per second”)

« Design decisions (e.g., "Backup servers are deployed in case the
primary one fails” or “An interface is used to hide details about the
format of a stock quote from its clients™)

 Empirical data (e.g., “‘Based on historical data, the battery is expected
to last 3 months before failing”)

* Procedures (e.g., “The battery is replaced regularly by the user”)

Assurance Case: Delivery Robot

. : Sensor
:;E)';?Ic?lm: Sidewalk . Subclaim: Sensor maintenance
etects pedestrians rovides accurate data
Claim: Sidewalk robot /| on time P procedure
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller _
before colliding with generates breaking -EXhaUStIVG
detected pedestrians commands on time Input-output
testing
The claim The argument The evidence

Assurance Cases In Practice

Aurora’s self-driving vehicles are
acceptably safe to operate on public | ™A
roads® =

Gl
Proficient

G2 G3

Fail-Safe Continuously
Improving

G4 G5
Resilient Trustworthy

The self-driving vehicle
is acceptably safe
during nominal
operation

The self-driving vehicle All identified potential

is acceptably safe in safety issues posing an

presence of faults and unreasonable risk to

failures safety are evaluated,
and resolved with
appropriate corrective
and preventative
actions

The self-driving vehicle The self-driving
is acceptably safe in enterprise is
case of reasonably trustworthy
foreseeable misuse

and unavoidable

events

https://safetycaseframework.aurora.tech/

Assurance Cases In Practice

Show Comments || Save with Comments |

Assurance Case Report generated by TurboAC™ Software. © Gasshet™

iz report iz read o nentz (righf mouze ciick) and zave the commentz (in a different fi t can not
Claim| $2459992)
— Device design is adequately safe for is RMF Name: Infusi
L " i A 4 i use o
Context Ct Ag As
| The safety claim is made with focus
| on the design aspecis of the device,
and within the context that the device
Aa y is defined per its intended use . SITITETE
document and its design P;;“;;aml T a:equai?y m‘hﬁed and B
| specifications. 9 b e] =t
verified and and has
adequate reliability to ensure safety over
device life use.
X¥0 OPT hip =l
oot SEc BN ‘ppycec HLD OPT yyr l
Claim(5#459995) Claim(5£459994) Claim(5#459993)
[Device requirements are adequate and Device associsted rsks are completely Device is adequately refiable to ensure
design is adequately verified and validafed lidentified and adegusately mitigated safefy over its use life
Ct Ag As Ct Apg As Ct Ag As
i L N
3 v ¥ y
e into Context System hazard: oL rrl‘hn:ted of System and cmﬂr? s et refiability
use is adequately i . - iazards are mitig; ., SOUrces an ical componen iabili
i P e System hazards and sources of h . - "
specification, and specification is hazardous situations are defined in 1 - sit are and requirements are defined and validated
ade_qua_tety verified. In afidimn, final alignment with examples in the FDA _nsk a_nglysas is adequate for completely 53]
device is adequatel)t:alldamd. infusion pump TPLC guidance identifying hazards ?_']ﬂ sourcesicauses.
—) y
Claim(3#460001) Claim({5£459999)
|Risk analysis is adequate to ensure -
lcomplete identification of hazards, [Device system hazards are mitigated
\hazardous situations, causes and risk Ct Ag As
lcontrols —
Ct Ap As

information and adequate analysis the fop hazard has been analyzed for
techniques and tools. potential hazardous situations and
= adequately mifigated to reduce the risks
= to be acceptable level
(+

l Argument
— Applicable top hazards are identified in
_ _Argui 5 alignment with examples given in the FDA
Risk analysis has been it . >
':T?J?rl'; r;ﬂ and mdl LT / Infusion Pump TPLC guidance. Each of

v

(o)

Introduction of Assurance Case Method and its Application in Regulatory Science. Fubin Wu (2019).

Assurance Case: Benefits & Limitations

* Provides an explicit structure to a design argument
* Encourages the designer to articulate why their design works
« Easier to navigate, inspect, and refute for reviewers
* Provides traceability between system-level claims & low-level evidence

« Challenges and pitfalls
« Completeness: How do | know whether it's missing any subclaims?
 Effort in constructing the case & evidence: How much evidence is enough?

« System evolution: If system changes, must also recreate the case &
evidence

* Recall: Risk-driven design!

 Build an assurance case for the most important functionalities or quality
attributes

Exercise: Assurance Case for IntelliGuard

* Recall IntelliGuard from HW1
 Break into groups; pick one person’s design from HW1

* For that design, develop an assurance case for the following top-
claim: “The intrusion detection system notifies the homeowner in
time when a stranger appears around the house”

 For evidence, include hypothetical pieces of evidence that you
would include (assuming you had implemented & tested the system)

« Make sure the assurance case is legible; you will share it with your
classmates later

Design Review

Design Review

« Goals
* Improve the quality of a design by identifying and addressing flaws

or weaknesses
« Communicate and align the understanding of the design with other

teams and stakeholders of the system
* Indicate that the product is ready for release or the next phase of

development
* Track changes and improvements to the system design over time

* There are no "standard” practices or methods for design reviews

 We will discuss how we can use an assurance case to drive a
design review process

Criteria for Reviewing an Assurance Case

Subclaim: Sidewalk : Sensor
robot detects pedestrians jem Subclaim: Sensor maintenance
- : provides accurate data d
Claim: Sidewalk robot on time proceaure
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller _
before colliding with <« generates breaking Exhaustive
detected pedestrians commands on time input-output
testing

« Soundness: Do the subclaims imply their parent claim? Are there any
missing subclaims?

 Validity: Is the evidence strong enough to support a leaf claim? Can the
evidence be independently verified (e.g., by re-running the test cases)?

Adversarial Thinking

* Think like an “attacker”, not the designer of the system

« As a reviewer, your goal is to invalidate the argument; i.e., show
how the system may fall to satisfy the claim in certain scenarios

 For each leaf subclaim: Think of a scenario where it fails to hold
due to insufficient evidence (validity flaw)

* For each non-leaf subclaim: Think of a scenario where all its
children subclaims hold but it does not (soundness flaw)

Component Diagram for Delivery Robot

Camera image Object
S — Detection | object detected ;
ensor Model ~ :
Controller > Motor
/v commands
GPS — Route Planner

« Consider domain entities & components that are involved In
achieving the desired functionality/quality attribute

* Q. Is there an assumption or responsibility missing from the
argument? Should that be added as a new subclaim?

Criteria for Reviewing an Assurance Case

Claim: Sidewalk robot
avoids collision with
pedestrians

Subclaim: Sidewalk

robot detects pedestrians ju—

on time

Subclaim: Sensor
provides accurate data

Sensor
maintenance
procedure

X

Subclaim: Robot stops
before colliding with
detected pedestrians

Subclaim: Controller
<€ generates breaking

commands on time

Exhaustive

input-output

testing

* Q. Is there an assumption or responsibility missing from the
argument? Should that be added as a new subclaim?

Reviewing Evidence

* For testing & program analysis reports: Re-run the tests or
analysis under the identical conditions (if possible) and compare the
output. Attempt to identify inputs that produce an incorrect output

(I.e., Invalidate the subclaim).

* For design decisions: Review the design document (e.g.,
component diagram) and the code to ensure that the documented

decisions are implemented properly in the system.

* For procedures: Check that the procedure is trustworthy; often
requires domain knowledge!

* For empirical data: Apply proper statistical methods to ensure the
validity of the presented data

Sample Review Comments

« Soundness flaw: The subclaim “Sensor provides accurate data” is
not enough to ensure “Sidewalk robot detects pedestrians on time”,
since the object detection model may fail to detect a pedestrian even
if it's given an accurate image from the sensor.

« Validity flaw: There is not enough evidence to support the subclaim
“Sensor provides accurate data”. Sensor might fail during
deployment between maintenance procedures and cause the robot
to ignore a pedestrian.

Responding to Review Feedback

 Be open to feedback! The goal is to improve the design, not to
argue that you are right (no matter what)

« But refute the feedback when appropriate! It is possible that the
reviewer misunderstood the design/argument. Explain why the

feedback Is incorrect.

* Do nothing but put on backlog: The identified flaws might not be
significant enough to be addressed now, but can be revisited later

* Improve the argument
* Improve the design, if the former is not possible.

« Send the revised assurance case back for a further review; repeat
until no more feedback

Improving the Argument

* For each leaf subclaim: A scenario where it fails to hold (due to
iInsufficient evidence)

« Add additional pieces of evidence to support the subclaim

 For each non-leaf subclaim: A scenario where all its children
subclaims hold but it does not

« Add a new subclaim(s) to ensure that the parent claim is implied by its
children

* The subclaim must correspond to a domain assumption or a
responsibility of an existing software component

If no further evidence or subclaim can be added to fix the argument,
then a valid argument does not exist — the design itself must be fixed!

Improved Assurance Case for Delivery Robot

Sensor
maintenance

Subsubclaim: Sensor
provides accurate data

rocedure

Redundant

Claim: Sidewalk robot
avoids collision with
pedestrians

Subclaim: Sidewalk
robot detects pedestrians
on time

Subsubclaim: Object
detection model is
accurate

sensor

Model accuracy

and robustness

The claim

Subclaim: Robot stops
before colliding with
detected pedestrians

Subsubclaim: Controller
generates breaking
commands on time

tests

Exhaustive input-

output testing

The argument

The evidence

Exercise: Assurance Case for IntelliGuard

» Take (1) an assurance case and (2) a component diagram for
IntelliGuard from another group

* Review the assurance case and identify potential flaws with respect
to soundness and validity

* Discuss the flaws identified by the other group: (1) refute if they are
not flaws or (2) devise ways to improve the argument or design to

address those flaws

Design Review: Tips

* Be constructive! The goal is to help improve the design, not to shoot
It down

* Don't nitpick; look for larger problems that could lead to significant
risks for the project

« Take a risk-driven approach! Focus on claims about most important
functionalities or quality attributes

* Recruit outsiders (e.g., customers, engineers from another team)
for review, to reduce bias

« Keep a record of suggestions from the reviewers; track which of
those suggestions have been implemented

* Do design reviews regularly, after each project milestone or iteration

Summary

o Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Leaning Goals
	Slide 4: Design Review
	Slide 5: Design Review in Practice
	Slide 6: Design Review at Google
	Slide 7: Request for Comments (RFC)
	Slide 8: Challenges with Design Reviews
	Slide 9: Documenting for Design Reviews
	Slide 10: Today’s Class
	Slide 11
	Slide 12: Arguing why your design works
	Slide 13: But in software…
	Slide 14: Design Argumentation
	Slide 15: Assurance Case
	Slide 16: Assurance Case: Structure
	Slide 17: Example: Sidewalk Delivery Robot
	Slide 18: Building an Assurance Case
	Slide 19: Assurance Case: Delivery Robot
	Slide 20: Building an Assurance Case
	Slide 21: Assurance Case: Delivery Robot
	Slide 22: Assurance Case: Delivery Robot
	Slide 23: Building an Assurance Case
	Slide 24: Assurance Case: Delivery Robot
	Slide 25: Assurance Cases in Practice
	Slide 26: Assurance Cases in Practice
	Slide 27: Assurance Case: Benefits & Limitations
	Slide 28: Exercise: Assurance Case for IntelliGuard
	Slide 29
	Slide 30: Design Review
	Slide 31: Criteria for Reviewing an Assurance Case
	Slide 32: Adversarial Thinking
	Slide 33: Component Diagram for Delivery Robot
	Slide 34: Criteria for Reviewing an Assurance Case
	Slide 35: Reviewing Evidence
	Slide 36: Sample Review Comments
	Slide 37: Responding to Review Feedback
	Slide 38: Improving the Argument
	Slide 39: Improved Assurance Case for Delivery Robot
	Slide 40: Exercise: Assurance Case for IntelliGuard
	Slide 41: Design Review: Tips
	Slide 42: Summary

