
17-423/723:
Designing Large-scale
Software Systems
Arguing for & Reviewing
Designs
Feb 26, 2024

2

Logistics
• M2 deadline extended to Friday
• Midterm on Wednesday

• Covers up to the lectures last Wednesday (Design with reuse)
• In class, open-book (but no ChatGPT or LLMs!)
• Bonus points for submitting hand-written study notes with the exam

3

Leaning Goals
• Devise and document an argument for why the design achieves a

desired function or quality attribute
• Review and identify weaknesses in an existing design argument

4

Design Review
• An activity for evaluating a design against its requirements

• Check whether a product (designed or implemented) achieves its
expected functionality and quality attributes

• Identify potential issues to be addressed
• An important part of a software development process in practice
• Not the same as code review!

• Design review: Focus is on higher-level design decisions
• Code review: Focus is on the quality of the source code (e.g.,

correctness, readability, etc.,)

5

Design Review in Practice

6

Design Review at Google

• Widely performed at Google
• Design docs are written using

Google Docs
• Stakeholders leave comments

directly on the docs

Improving Design Reviews at Google
Celal Ziftci

Google

New York, USA
celal@google.com

Ben Greenberg
Google

Vermont, USA
greenbben@google.com

Abstract—Design review is an important initial phase of the
software development life-cycle where stakeholders gain and dis-
cuss early insights into the design’s viability, discover potentially
costly mistakes, and identify inconsistencies and inadequacies.
For improved development velocity, it is important that design
owners get their designs approved as quickly as possible.

In this paper, we discuss how engineering design reviews are
typically conducted at Google, and propose a novel, structured,
automated solution to improve design review velocity. Based
on data collected on 141,652 approved documents authored by
41,030 users over four years, we show that our proposed solution
decreases median time-to-approval by 25%, and provides further
gains when used consistently. We also provide qualitative data to
demonstrate our solution’s success, discuss factors that impact
design review latency, propose strategies to tackle them, and
share lessons learned from the usage of our solution.

Index Terms—design, design review, review and evaluation,
peer reviewing, architecture review, engineering design

I. INTRODUCTION

Design review is a critical and early stage in the software
development process where stakeholders can provide design
feedback, identify potential problems, and avoid costly mis-
takes in the subsequent steps of development [1]–[3].

Design reviews are widely adopted in the industry with more
than 70% of the participants of a survey reported producing
a requirements document or design [4]. Design reviews are
also widely used across Google, where design documents
are typically written in Google Docs [5] and stakeholders,
including approvers, are added to the document by mentioning
their emails in Google Docs comments or action items [6].
This design review process is neither structured nor automated,
and has several shortcomings that hinder design review veloc-
ity: authors and approvers cannot track their design reviews
easily, lack of actionable reminders lengthen the design review
duration, commitments & approvals on the design are not
recorded automatically.

In this paper, we propose a minimally invasive and general-
izable technique to structure and automate the design review
process through an integrated ecosystem of developer tools,
present data based on the use of this technique over four years
across Google, demonstrate how our technique dramatically
improved design reviews for thousands of engineers, and
summarize the lessons learned in the process.

II. DESIGN REVIEWS AT GOOGLE

Design reviews are widely used across Google. Although
there are various tools available, Google Docs [5] is the most

(a) (b)

Fig. 1: Stakeholder added to a design document in Google
Docs. The person in (a) is added for awareness, while the
person in (b) is an approver. Approvers approve documents
by resolving the action item assigned to them using the check
mark at the top right corner.

widely used tool to author engineering design documents.
After authoring, the owner of the design document typically

adds stakeholders to the document by mentioning them with
their email addresses inside Google Docs comments or action
items [6], shown in Fig.1.

Distinguished using the comment’s descriptive text, some
people are mentioned for visibility and awareness, as in
Fig.1(a), while others are approvers whose approval is required
before the proposed design is implemented, as in Fig.1(b).

When a person is mentioned in a comment, they get an
email in their inbox. Then, they typically add comments on
the document for details, clarifications, and changes from the
author, and after some back and forth discussions, they finally
indicate their agreement or approval with the document by
resolving the action item assigned to themselves [6] using the
check mark at the top right corner shown in Fig.1.

Engineering design reviews are typically fluid, i.e. during
discussions with approvers, authors may update their docu-
ments as needed even after certain approvers already approved
the document, and there may still be unresolved comments on
the document even after all approvals are obtained.

There are several shortcomings with this workflow from
both the author and the approver perspectives.

First, relying only on the the emails sent to approvers is not
ideal, as they have no distinguishing properties from the other
emails, making it hard for approvers to keep track of design
documents that need their attention, lengthening the design
review unnecessarily.

Improving Design Reviews at Google.
Ziftci & Greenberg. IEEE/ACM ASE (2023).

7

Challenges with Design Reviews

8

Documenting for Design Reviews
• Code is a poor abstraction for understanding why/how design works
• To facilitate a design review, design decisions must be documented
• We have already discussed different notations for documenting a

design:
• Context (domain) models
• Component diagrams
• Data models
• Sequence diagrams

• But these notations don’t explicitly say why the design decisions
were made, and how they support the system in achieving desired
functionality

9

Today’s Class
• Design argumentation: Devising and documenting an explicit

argument for why the system design achieves its expected
functionality

• Design review: Identifying weaknesses in the argument &
suggesting ways to improve the design

10

Design Arguments

11

Design Argumentation
• Goal: Argue “why my design works”
• An argument is often implicit and

incomplete in the designer’s mind
• If you can’t produce a strong argument,

how do you know that your system
works?

• Allow another person to review &
identify weaknesses in the argument

• One approach: Assurance case
• Assurance: The process of

demonstrating that the system will
function and satisfy its quality attributes
as intended

12

Assurance Case
• An explicit argument that a system achieves a desired requirement,

along with supporting evidence
• Claim: A statement about a piece of functionality or quality attribute

of the system
• Argument: A top-level decomposed into multiple, hierarchical sub-

claims
• Evidence: A documented piece of evidence that supports a leaf sub-

claim
• Results of testing, software analysis, formal verification, inspection,

expert opinions, architecture design
• Must be auditable & verifiable independently by a third party

13

Assurance Case: Structure

© 2008 Carnegie Mellon University 17

Presentation Title 1/22/09

33

Assurance Cases

December 2008

© 2008 Carnegie Mellon University

What is an Assurance Case?

A structured demonstration that a system is acceptably safe, secure,

reliable, etc.

•  A comprehensive presentation of evidence linked (by argument) to a

claim

IF THEN Claim1; IF THEN Claim2; IF THEN Claim3;

IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

Evidence

Evidence

Evidence

Claim2

Claim3

Claim4

Claim1

Claim

34

Assurance Cases

December 2008

© 2008 Carnegie Mellon University

Goal Structuring Notation

Goal Structuring Notation (GSN) was developed to help organize and
structure Safety Cases in a readily reviewable form

GSN has been used in Safety Case development for over a decade. A
brief overview of its history is in [Kelly 04]

GSN has been successfully used to document Safety Cases for systems
such as aircraft avionics, rail signaling, air traffic control, and nuclear
reactor shutdown

We have used it to build cases showing that other attributes of interest
(e.g., security) have been met.

[Kelly 04] Tim Kelly, and Rob Weaver. The Goal Structuring Notation — A Safety Argument Notation.
http://www-users.cs.york.ac.uk/~rob/papers/DSN04.pdf

© 2008 Carnegie Mellon University 17

Presentation Title 1/22/09

33

Assurance Cases

December 2008

© 2008 Carnegie Mellon University

What is an Assurance Case?

A structured demonstration that a system is acceptably safe, secure,

reliable, etc.

•  A comprehensive presentation of evidence linked (by argument) to a

claim

IF THEN Claim1; IF THEN Claim2; IF THEN Claim3;

IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim

Evidence

Evidence

Evidence

Claim2

Claim3

Claim4

Claim1

Claim

34

Assurance Cases

December 2008

© 2008 Carnegie Mellon University

Goal Structuring Notation

Goal Structuring Notation (GSN) was developed to help organize and
structure Safety Cases in a readily reviewable form

GSN has been used in Safety Case development for over a decade. A
brief overview of its history is in [Kelly 04]

GSN has been successfully used to document Safety Cases for systems
such as aircraft avionics, rail signaling, air traffic control, and nuclear
reactor shutdown

We have used it to build cases showing that other attributes of interest
(e.g., security) have been met.

[Kelly 04] Tim Kelly, and Rob Weaver. The Goal Structuring Notation — A Safety Argument Notation.
http://www-users.cs.york.ac.uk/~rob/papers/DSN04.pdf

14

Example: Sidewalk Delivery Robot

15

Building an Assurance Case
1. Identify a top-level claim to demonstrate: A statement about a

piece of desired functionality or a quality attribute
• The intrusion detection system notifies the homeowner in time when a

stranger appears around the house (functionality)
• The movie streaming app delivers its content at 1080p resolution with

less than 1 second buffering event (performance)
• The stock tracker app can be extended with new types of output format

without impacting the rest of functionality (changeability)
• The sidewalk robot avoids collision with pedestrians (safety)

16

Assurance Case: Delivery Robot

17

Building an Assurance Case
1. Identify a top-level claim to demonstrate: A statement about a

piece of desired functionality or a quality attribute
2. Identify one or more sub-claims to support a higher-level claim.

• Logically, "If all the sub-claims hold, then their parent claim also holds”
• Each sub-claim can, in turn, be decomposed into further sub-claims
• Each leaf-level sub-claim describes (1) the responsibility of a software

component or (2) an assumption about a domain entity

18

Assurance Case: Delivery Robot

Subclaim: Sensor
provides accurate data

Subclaim: Controller
generates breaking
commands on time

19

Assurance Case: Delivery Robot

Subclaim: Sensor
provides accurate data

Subclaim: Controller
generates breaking
commands on time

Domain
Assumption

Component
responsibility

20

Building an Assurance Case
1. Identify a top-level claim to demonstrate: A statement about a

piece of desired functionality or a quality attribute
2. Identify one or more sub-claims to support a higher-level claim.
3. For each leaf-level sub-claim, provide a piece of evidence to

support the claim
• Results of testing or program analysis (e.g., “The app successfully

handled stress testing with 1,000 user requests per second”)
• Design decisions (e.g., ”Backup servers are deployed in case the

primary one fails” or “An interface is used to hide details about the
format of a stock quote from its clients”)

• Empirical data (e.g., “The battery is expected to last 3 months before
failing”)

• Procedures (e.g., “The battery is replaced regularly by the user”)

21

Assurance Case: Delivery Robot

Subclaim: Sensor
provides accurate data

Subclaim: Controller
generates breaking
commands on time

Sensor
maintenance

procedure

Exhaustive
input-output

testing

22

Assurance Cases in Practice

https://blog.aurora.tech/safety/aurora-unveils-first-ever-safety-case-framework

23

Assurance Cases in Practice

Introduction of Assurance Case Method and its Application in Regulatory Science. Fubin Wu (2019).

14

Example: Infusion Pump Safety Assurance Case Argument Structure – Graphical Format

24

Assurance Case: Benefits & Limitations
• Provides an explicit structure to a design argument

• Encourages the designer to articulate why their design works
• Easier to navigate, inspect, and refute for reviewers
• Provides traceability between system-level claims & low-level evidence

• Challenges and pitfalls
• Completeness: How do I know whether it’s missing any sub-claims?
• Effort in constructing the case & evidence: How much evidence is enough?
• System evolution: If system changes, must also recreate the case &

evidence
• Recall: Risk-driven design!

• Build an assurance case for the most important functionalities or quality
attributes

25

Exercise: Assurance Case for IntelliGuard
• Recall IntelliGuard from HW1
• Break into groups; pick one person’s design from HW1
• For that design, develop an assurance case for the following top-

claim: “The intrusion detection system notifies the homeowner in
time when a stranger appears around the house”

• For evidence, include hypothetical pieces of evidence that you
would include (assuming you had implemented & tested the system)

• Make sure the assurance case is legible; you will share it with your
classmates later

26

Design Review

27

Design Review
• Goals

• Improve the quality of a design by identifying and addressing flaws or
weaknesses

• Communicate and align the understanding of the design with other
teams and stakeholders of the system

• Indicate that the product is ready for release or the next phase of
development

• Track changes and improvements to the system design over time
• There are no ”standard” practices or methods for design reviews
• We will use an assurance case as the basis for reviewing a design

28

Criteria for Reviewing an Assurance Case

• Soundness: Do the sub-claims imply their parent claim? Are there any
missing sub-claims?

• Validity: Is the evidence strong enough to support a leaf claim? Can the
evidence be independently verified (e.g., by re-running the test cases)?

29

Adversarial Thinking
• Think like an “attacker”, not the designer of the system
• As a reviewer, your goal is to invalidate the argument; i.e., show

how the system may fail to satisfy the claim in certain scenarios
• For each leaf sub-claim: Think of a scenario where it fails to hold

due to insufficient evidence (validity flaw)
• For each non-leaf sub-claim: Think of a scenario where all its

children sub-claims hold but it does not (soundness flaw)

30

Component Diagram for Delivery Robot

• Consider domain entities & components that are involved in
achieving the desired functionality/quality attribute

• Is there an assumption or responsibility missing from the argument?

Camera
Sensor

Object
Detection

Model

Controller Motor

Route PlannerGPS

object detected

waypoint

image

location

commands

31

Reviewing Evidence
• For testing & program analysis reports: Re-run the tests or

analysis under the identical conditions (if possible) and compare the
output. Check whether the result (e.g., test coverage) is strong
enough to support the sub-claim.

• For design decisions: Review the design document (e.g.,
component diagram) and the code to ensure that the documented
decisions are implemented properly in the system.

• For procedures: Check the procedure; often requires domain
knowledge!

• For empirical data: Apply proper statistical methods to ensure the
validity of the presented data

32

Sample Review Comments

• Soundness flaw: The sub-claim “Sensor provides accurate data” is
not enough to ensure “Sidewalk robot detects pedestrians on time”,
since the object detection model may fail to detect a pedestrian even
if it’s given an accurate image from the sensor.

• Validity flaw: There is not enough evidence to support the sub-claim
“Sensor provides accurate data”. Sensor might fail during
deployment between maintenance procedures and cause the robot
to ignore a pedestrian.

33

Responding to Review Feedback
• Refute the feedback! It is possible that the reviewer misunderstood

the design/argument. Explain why the feedback is incorrect.
• Do nothing but put on backlog: The identified flaws might not be

significant enough to be addressed now, but can be revisited later
• Improve the argument
• Improve the design, if the former is not possible.
• Send the revised assurance case back for a further review; repeat

until no more feedback

34

Improving the Argument
• For each leaf sub-claim: A scenario where it fails to hold (due to

insufficient evidence)
• Add additional pieces of evidence to support the sub-claim

• For each non-leaf sub-claim: A scenario where all its children sub-
claims hold but it does not

• Add a new sub-claim(s) to ensure that the parent claim is implied by its
children

• The sub-claim must correspond to a domain assumption or a
responsibility of an existing software component

• If no further evidence or sub-claim can be added to fix the argument,
then a valid argument does not exist – the design itself must be fixed!

35

Improved Assurance Case for Delivery Robot

Exhaustive input-
output testing

36

Exercise: Assurance Case for IntelliGuard
• Take (1) an assurance case and (2) a component diagram for

IntelliGuard from another group
• Review the assurance case and identify potential flaws with respect

to soundness and validity
• Discuss the flaws identified by the other group: (1) refute if they are

not flaws or (2) devise ways to improve the argument or design to
address those flaws

37

Design Review: Tips
• Be constructive! The goal is to help improve the design, not to shoot

it down
• Don’t nitpick; look for larger problems that could lead to significant

risks for the project
• Take a risk-driven approach! Focus on claims about most important

functionalities or quality attributes
• Recruit outsiders (e.g., customers, engineers from another team) for

review, to reduce bias
• Keep a record of suggestions from the reviewers; track which of

those suggestions have been implemented
• Do design reviews regularly, after each project milestone or iteration

38

Summary
• Exit ticket!

