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Designing Large-scale
Software Systems

Design Reviews
Mar 10, 2025




Logistics

* M3 released

* Wednesday'’s lecture: Class-wide activity
* Please make sure every team member is present!




Leaning Goals

* Devise and document an argument for why the design achieves a
desired function or quality attribute

* Review and identify weaknesses in an existing design argument




Design Review

* An activity for evaluating a design against system requirements

« Check whether a product (designed or implemented) achieves its
expected functionality and quality attributes

« |dentify potential issues to be addressed
« An important part of a software development process in practice

* Not the same as code review!
* Design review: Focus is on higher-level design decisions

« Code review: Focus is on the guality of the source code (e.g.,
correctness, readability, etc.,)



Design Review In Practice
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Design Review at Google
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Requirements

. Celal Ziftci
« Automatically book gym two days in advance, at midnight . ]
o The program needs no human interaction after started, should be fault tolerant and 3:07PM TOda\/
reasonably retry

e The program runs on a Mac @greenbben@google.com

e User can specify username, password, the sport to book, date and time to book, etc

Non-goals: .
o Book only 1 or 2 days in advance, or for the current day Please review and a pprove before

Tolerant to OS or network issues

e Functioning if booking server is down | start with the implementation.
e Functioning if website structure(HTML) changes

Assigned to Ben Greenberg

High-level design

Browser automation V.S. request simulation

Browser automation is using a program to control a real browser and automate the operation on

the GUI. Request simulation is having the program talking with the server via HTTP, as if it is a ([ ] WI d e I e rfo rm e d at G O O I e
web browser, rather than controlling one.
Browser automation is preferred over request simulation. The considerations are: . . .
e [pros] Browser automation started a real browser instance so we know what's going on ) D e S I g n d O C S ar e er tte n u S I n g
when the program runs, it makes debugging and development much easier
e [pros] The website requires javascript to load the controls, this is hard to implement
programmatically, may need to control some rendering engine G I D
# [cons] Browser automation depends on the HTML structures while request simulation O O g e O CS

depends on the HTTP APlIs. APIs are far less likely to change.

e Stakeholders leave comments

Improving Design Reviews at Google. directly on the docs
Ziftci & Greenberg. IEEE/ACM ASE (2023).




Request for Comments (RFC)

« A common type of document used for design proposals and reviews

* Describes a design proposal/decision, why it is needed (i.e., goals),
how it works, and alternatives considered

* Frequently used by technical committees for network protocols and
standards (e.g., HTTP, TCP/IP, OAuth...)

 But also used within tech organizations to document and review
major design/product proposals

 Example: A sample RFC at Sourcegraph
* (More examples)



https://docs.google.com/document/d/15XJnQ-qa-Y3SM2eltuKfuESmgYYfx7JhEdi2447YF_0/edit?tab=t.0
https://blog.pragmaticengineer.com/rfcs-and-design-docs/

Challenges with Design Reviews
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Documenting for Design Reviews

» Code is a poor abstraction for understanding why/how design works
* To faclilitate a design review, design decisions must be documented

* We have already discussed different notations for documenting a
design:
« Context (domain) models
« Component diagrams
« Data models
« Sequence diagrams

 But these notations don't explicitly say why the design decisions
were made, and how they support the system in achieving desired

quality



Today’s Class

* Design argumentation: Devising and documenting an explicit
argument for why the system design achieves its expected
functionality

* Design review: ldentifying weaknesses in the argument &
suggesting ways to improve the design




Design Arguments




Arguing why your design works
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But in software...

“Software is like a cathedral; first we build it,
and then we pray.” — Sam Redwine



Design Argumentation

» Goal: Argue “why my design works”

« An argument is often implicit and
Incomplete in the designer’'s mind

* If you can’t produce a strong argument,
how do you know that your system
WOrks?

* Allow another person to review &
identify weaknesses in the argument

« One approach: Assurance case

« Assurance: The process of
demonstrating that the system will
function and satisfy its quality attributes
as intended

THE STRENGTH OF ARCHITECTURE

Why Buildings




Assurance Case

« An explicit argument that a system achieves a desired requirement,
along with supporting evidence

« Claim: A statement about a piece of functionality or quality attribute
of the system

« Argument: A top-level decomposed into multiple, hierarchical
subclaims

* Evidence: A documented piece of evidence that supports a leaf
subclaim

« Results of testing, software analysis, formal verification, inspection,
expert opinions, architecture design

* Must be auditable & verifiable independently by a third party



Assurance Case: Structure

Claim1

Claim2

N

e

Claim4
\ _
Claim3

\/—v\
Argument
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IF Claim2 and Claim3 THEN Claim4; IF Claim1 and Claim4 THEN Claim



xample: Sidewalk Delivery Robot
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Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
piece of desired functionality or a quality attribute

* The intrusion detection system notifies the homeowner in time when a
stranger appears around the house (functionality)

* The movie streaming app delivers its content at 1080p resolution with
less than 1 second buffering event (performance)

* The stock tracker app can be extended with new types of output format
without impacting the rest of functionality (changeability)

* The sidewalk robot avoids collision with pedestrians (safety)



Assurance Case: Delivery Robot

Claim: Sidewalk robot
avoids collision with
pedestrians

The claim



Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
niece of desired functionality or a quality attribute

2. ldentify one or more subclaims to support a higher-level claim.
* Logically, "If all the subclaims hold, then their parent claim also holds”
« Each subclaim can, in turn, be decomposed into further subclaims

« Each leaf-level subclaim describes (1) the responsibility of a software
component or (2) an assumption about a domain entity




Assurance Case: Delivery Robot

Subclaim: Sidewalk Subclaim: Sensor
robot detects pedestrians - '

Claim: Sidewalk robot /| on time provides accurate data

avoids collision with

pedestrians Subclaim: Robot stops Subclaim: Controller
before colliding with generates breaking
detected pedestrians commands on time

The claim The argument



Assurance Case: Delivery Robot

Domain
Assumption
Subclaim: Sidewalk Subclaim: Sensor
robot detects pedestrians - '
Claim: Sidewalk robot /| on time provides accurate data
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller
before colliding with generates breaking
detected pedestrians commands on time Component
responsibility
The claim The argument



Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a
niece of desired functionality or a quality attribute

2. ldentify one or more subclaims to support a higher-level claim.

3. For each leaf-level subclaim, provide a piece of evidence to
support the claim

* Results of testing or program analysis (e.g., “The app successfully
handled stress testing with 1,000 user requests per second”)

« Design decisions (e.g., "Backup servers are deployed in case the
primary one fails” or “An interface is used to hide details about the
format of a stock quote from its clients™)

 Empirical data (e.g., “‘Based on historical data, the battery is expected
to last 3 months before failing”)

* Procedures (e.g., “The battery is replaced regularly by the user”)




Assurance Case: Delivery Robot

. : Sensor
:;E)';?Ic?lm: Sidewalk . Subclaim: Sensor maintenance
etects pedestrians rovides accurate data
Claim: Sidewalk robot /| on time P procedure
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller _
before colliding with generates breaking -EXhaUStIVG
detected pedestrians commands on time Input-output
testing
The claim The argument The evidence



Assurance Cases In Practice

Aurora’s self-driving vehicles are
acceptably safe to operate on public | ™A
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https://safetycaseframework.aurora.tech/



Assurance Cases In Practice

Show Comments || Save with Comments |

Assurance Case Report generated by TurboAC™ Software. © Gasshet™
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Introduction of Assurance Case Method and its Application in Regulatory Science. Fubin Wu (2019).




Assurance Case: Benefits & Limitations

* Provides an explicit structure to a design argument
* Encourages the designer to articulate why their design works
« Easier to navigate, inspect, and refute for reviewers
* Provides traceability between system-level claims & low-level evidence

« Challenges and pitfalls
« Completeness: How do | know whether it's missing any subclaims?
 Effort in constructing the case & evidence: How much evidence is enough?

« System evolution: If system changes, must also recreate the case &
evidence

* Recall: Risk-driven design!

 Build an assurance case for the most important functionalities or quality
attributes



Exercise: Assurance Case for IntelliGuard

* Recall IntelliGuard from HW1
 Break into groups; pick one person’s design from HW1

* For that design, develop an assurance case for the following top-
claim: “The intrusion detection system notifies the homeowner in
time when a stranger appears around the house”

 For evidence, include hypothetical pieces of evidence that you
would include (assuming you had implemented & tested the system)

« Make sure the assurance case is legible; you will share it with your
classmates later




Design Review




Design Review

« Goals
* Improve the quality of a design by identifying and addressing flaws

or weaknesses
« Communicate and align the understanding of the design with other

teams and stakeholders of the system
* Indicate that the product is ready for release or the next phase of

development
* Track changes and improvements to the system design over time

* There are no "standard” practices or methods for design reviews

 We will discuss how we can use an assurance case to drive a
design review process



Criteria for Reviewing an Assurance Case

Subclaim: Sidewalk : Sensor
robot detects pedestrians jem Subclaim: Sensor maintenance
- : provides accurate data d
Claim: Sidewalk robot on time proceaure
avoids collision with
pedestrians Subclaim: Robot stops Subclaim: Controller _
before colliding with <« generates breaking Exhaustive
detected pedestrians commands on time input-output
testing

« Soundness: Do the subclaims imply their parent claim? Are there any
missing subclaims?

 Validity: Is the evidence strong enough to support a leaf claim? Can the
evidence be independently verified (e.g., by re-running the test cases)?



Adversarial Thinking

* Think like an “attacker”, not the designer of the system

« As a reviewer, your goal is to invalidate the argument; i.e., show
how the system may fall to satisfy the claim in certain scenarios

 For each leaf subclaim: Think of a scenario where it fails to hold
due to insufficient evidence (validity flaw)

* For each non-leaf subclaim: Think of a scenario where all its
children subclaims hold but it does not (soundness flaw)




Component Diagram for Delivery Robot

Camera image Object
S —  Detection | object detected ;
ensor Model ~ :
Controller > Motor
/v commands
GPS — Route Planner

« Consider domain entities & components that are involved In
achieving the desired functionality/quality attribute

* Q. Is there an assumption or responsibility missing from the
argument? Should that be added as a new subclaim?



Criteria for Reviewing an Assurance Case

Claim: Sidewalk robot
avoids collision with
pedestrians

Subclaim: Sidewalk

robot detects pedestrians ju—

on time

Subclaim: Sensor
provides accurate data

Sensor
maintenance
procedure

X

Subclaim: Robot stops
before colliding with
detected pedestrians

Subclaim: Controller
<€ generates breaking

commands on time

Exhaustive

input-output

testing

* Q. Is there an assumption or responsibility missing from the
argument? Should that be added as a new subclaim?



Reviewing Evidence

* For testing & program analysis reports: Re-run the tests or
analysis under the identical conditions (if possible) and compare the
output. Attempt to identify inputs that produce an incorrect output

(I.e., Invalidate the subclaim).

* For design decisions: Review the design document (e.g.,
component diagram) and the code to ensure that the documented

decisions are implemented properly in the system.

* For procedures: Check that the procedure is trustworthy; often
requires domain knowledge!

* For empirical data: Apply proper statistical methods to ensure the
validity of the presented data



Sample Review Comments

« Soundness flaw: The subclaim “Sensor provides accurate data” is
not enough to ensure “Sidewalk robot detects pedestrians on time”,
since the object detection model may fail to detect a pedestrian even
if it's given an accurate image from the sensor.

« Validity flaw: There is not enough evidence to support the subclaim
“Sensor provides accurate data”. Sensor might fail during
deployment between maintenance procedures and cause the robot
to ignore a pedestrian.



Responding to Review Feedback

 Be open to feedback! The goal is to improve the design, not to
argue that you are right (no matter what)

« But refute the feedback when appropriate! It is possible that the
reviewer misunderstood the design/argument. Explain why the

feedback Is incorrect.

* Do nothing but put on backlog: The identified flaws might not be
significant enough to be addressed now, but can be revisited later

* Improve the argument
* Improve the design, if the former is not possible.

« Send the revised assurance case back for a further review; repeat
until no more feedback



Improving the Argument

* For each leaf subclaim: A scenario where it fails to hold (due to
iInsufficient evidence)

« Add additional pieces of evidence to support the subclaim

 For each non-leaf subclaim: A scenario where all its children
subclaims hold but it does not

« Add a new subclaim(s) to ensure that the parent claim is implied by its
children

* The subclaim must correspond to a domain assumption or a
responsibility of an existing software component

If no further evidence or subclaim can be added to fix the argument,
then a valid argument does not exist — the design itself must be fixed!



Improved Assurance Case for Delivery Robot

Sensor
maintenance

Subsubclaim: Sensor
provides accurate data

rocedure

Redundant

Claim: Sidewalk robot
avoids collision with
pedestrians

Subclaim: Sidewalk
robot detects pedestrians
on time

Subsubclaim: Object
detection model is
accurate

sensor

Model accuracy

and robustness

The claim

Subclaim: Robot stops
before colliding with
detected pedestrians

Subsubclaim: Controller
generates breaking
commands on time

tests

Exhaustive input-

output testing

The argument

The evidence



Exercise: Assurance Case for IntelliGuard

» Take (1) an assurance case and (2) a component diagram for
IntelliGuard from another group

* Review the assurance case and identify potential flaws with respect
to soundness and validity

* Discuss the flaws identified by the other group: (1) refute if they are
not flaws or (2) devise ways to improve the argument or design to

address those flaws




Design Review: Tips

* Be constructive! The goal is to help improve the design, not to shoot
It down

* Don't nitpick; look for larger problems that could lead to significant
risks for the project

« Take a risk-driven approach! Focus on claims about most important
functionalities or quality attributes

* Recruit outsiders (e.g., customers, engineers from another team)
for review, to reduce bias

« Keep a record of suggestions from the reviewers; track which of
those suggestions have been implemented

* Do design reviews regularly, after each project milestone or iteration



Summary

o Exit ticket!
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