
17-423/723: 
Designing Large-scale 
Software Systems

Design Reviews
Mar 10, 2025



2

Logistics

• M3 released

• Wednesday’s lecture: Class-wide activity

• Please make sure every team member is present!



3

Leaning Goals

• Devise and document an argument for why the design achieves a 
desired function or quality attribute

• Review and identify weaknesses in an existing design argument



4

Design Review

• An activity for evaluating a design against system requirements 
• Check whether a product (designed or implemented) achieves its 

expected functionality and quality attributes

• Identify potential issues to be addressed

• An important part of a software development process in practice

• Not the same as code review!

• Design review: Focus is on higher-level design decisions

• Code review: Focus is on the quality of the source code (e.g., 
correctness, readability, etc.,)



5

Design Review in Practice



6

Design Review at Google

• Widely performed at Google

• Design docs are written using 
Google Docs

• Stakeholders leave comments 
directly on the docs

Improving Design Reviews at Google

Celal Ziftci
Google

New York, USA

celal@google.com

Ben Greenberg
Google

Vermont, USA

greenbben@google.com

Abstract—Design review is an impor tant initial phase of the
software development life-cycle where stakeholders gain and dis-
cuss ear ly insights into the design’s viability, discover potentially
costly mistakes, and identify inconsistencies and inadequacies.
For improved development velocity, it is impor tant that design
owners get their designs approved as quickly as possible.

In this paper, we discuss how engineer ing design reviews are
typically conducted at Google, and propose a novel, structured,
automated solution to improve design review velocity. Based
on data collected on 141,652 approved documents authored by
41,030 users over four years, we show that our proposed solution
decreases median time-to-appr oval by 25%, and provides fur ther
gains when used consistently. We also provide qualitative data to
demonstrate our solution’s success, discuss factors that impact
design review latency, propose strategies to tackle them, and
share lessons learned from the usage of our solution.

Index Terms—design, design review, review and evaluation,
peer reviewing, architecture review, engineer ing design

I . INTRODUCTION

Design review is a critical and early stage in the software

development process where stakeholders can provide design

feedback, identify potential problems, and avoid costly mis-

takes in the subsequent steps of development [1]–[3].

Design reviewsarewidely adopted in the industry with more

than 70% of the participants of a survey reported producing

a requirements document or design [4]. Design reviews are

also widely used across Google, where design documents

are typically written in Google Docs [5] and stakeholders,

including approvers, are added to the document by mentioning

their emails in Google Docs comments or action items [6].

This design review process is neither structured nor automated,

and has several shortcomings that hinder design review veloc-

ity: authors and approvers cannot track their design reviews

easily, lack of actionable reminders lengthen the design review

duration, commitments & approvals on the design are not

recorded automatically.

In this paper, we propose a minimally invasive and general-

izable technique to structure and automate the design review

process through an integrated ecosystem of developer tools,

present data based on the use of this technique over four years

across Google, demonstrate how our technique dramatically

improved design reviews for thousands of engineers, and

summarize the lessons learned in the process.

I I . DESIGN REVIEWS AT GOOGLE

Design reviews are widely used across Google. Although

there are various tools available, Google Docs [5] is the most

(a) (b)

Fig. 1: Stakeholder added to a design document in Google

Docs. The person in (a) is added for awareness, while the

person in (b) is an approver. Approvers approve documents

by resolving the action item assigned to them using the check

mark at the top right corner.

widely used tool to author engineering design documents.

After authoring, the owner of the design document typically

adds stakeholders to the document by mentioning them with

their email addresses inside Google Docs comments or action

items [6], shown in Fig.1.

Distinguished using the comment’s descriptive text, some

people are mentioned for visibil ity and awareness, as in

Fig.1(a), while others areapproverswhoseapproval is required

before the proposed design is implemented, as in Fig.1(b).

When a person is mentioned in a comment, they get an

email in their inbox. Then, they typically add comments on

the document for details, clarifications, and changes from the

author, and after some back and forth discussions, they finally

indicate their agreement or approval with the document by

resolving the action item assigned to themselves [6] using the

check mark at the top right corner shown in Fig.1.

Engineering design reviews are typically fluid, i.e. during

discussions with approvers, authors may update their docu-

ments as needed even after certain approvers already approved

the document, and there may still be unresolved comments on

the document even after all approvals are obtained.

There are several shortcomings with this workflow from

both the author and the approver perspectives.

First, relying only on the the emails sent to approvers is not

ideal, as they have no distinguishing properties from the other

emails, making it hard for approvers to keep track of design

documents that need their attention, lengthening the design

review unnecessarily.

Improving Design Reviews at Google. 

Ziftci & Greenberg. IEEE/ACM ASE (2023).



7

Request for Comments (RFC)

• A common type of document used for design proposals and reviews

• Describes a design proposal/decision, why it is needed (i.e., goals), 
how it works, and alternatives considered

• Frequently used by technical committees for network protocols and 
standards (e.g., HTTP, TCP/IP, OAuth…)

• But also used within tech organizations to document and review 
major design/product proposals

• Example: A sample RFC at Sourcegraph

• (More examples)

https://docs.google.com/document/d/15XJnQ-qa-Y3SM2eltuKfuESmgYYfx7JhEdi2447YF_0/edit?tab=t.0
https://blog.pragmaticengineer.com/rfcs-and-design-docs/


8

Challenges with Design Reviews



9

Documenting for Design Reviews

• Code is a poor abstraction for understanding why/how design works

• To facilitate a design review, design decisions must be documented 

• We have already discussed different notations for documenting a 
design:

• Context (domain) models

• Component diagrams

• Data models

• Sequence diagrams

• But these notations don’t explicitly say why the design decisions 
were made, and how they support the system in achieving desired 
quality



10

Today’s Class

• Design argumentation: Devising and documenting an explicit 
argument for why the system design achieves its expected 
functionality

• Design review: Identifying weaknesses in the argument & 
suggesting ways to improve the design



11

Design Arguments



12

Arguing why your design works



13

But in software…

“Software is like a cathedral; first we build it, 

and then we pray.” – Sam Redwine



14

Design Argumentation

• Goal: Argue “why my design works”

• An argument is often implicit and 
incomplete in the designer’s mind

• If you can’t produce a strong argument, 
how do you know that your system 
works?

• Allow another person to review & 
identify weaknesses in the argument

• One approach: Assurance case
• Assurance: The process of 

demonstrating that the system will 
function and satisfy its quality attributes 
as intended



15

Assurance Case

• An explicit argument that a system achieves a desired requirement, 
along with supporting evidence

• Claim: A statement about a piece of functionality or quality attribute 
of the system

• Argument: A top-level decomposed into multiple, hierarchical 
subclaims

• Evidence: A documented piece of evidence that supports a leaf 
subclaim

• Results of testing, software analysis, formal verification, inspection, 
expert opinions, architecture design 

• Must be auditable & verifiable independently by a third party 



16

Assurance Case: Structure



17

Example: Sidewalk Delivery Robot



18

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a 
piece of desired functionality or a quality attribute

• The intrusion detection system notifies the homeowner in time when a 
stranger appears around the house (functionality)

• The movie streaming app delivers its content at 1080p resolution with 
less than 1 second buffering event (performance)

• The stock tracker app can be extended with new types of output format 
without impacting the rest of functionality (changeability)

• The sidewalk robot avoids collision with pedestrians (safety)



19

Assurance Case: Delivery Robot



20

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a 
piece of desired functionality or a quality attribute

2. Identify one or more subclaims to support a higher-level claim.

• Logically, "If all the subclaims hold, then their parent claim also holds”

• Each subclaim can, in turn, be decomposed into further subclaims

• Each leaf-level subclaim describes (1) the responsibility of a software 
component or (2) an assumption about a domain entity



21

Assurance Case: Delivery Robot

Subclaim: Sensor 

provides accurate data

Subclaim: Controller 

generates breaking 

commands on time



22

Assurance Case: Delivery Robot

Subclaim: Sensor 

provides accurate data

Subclaim: Controller 

generates breaking 

commands on time

Domain 

Assumption

Component 

responsibility



23

Building an Assurance Case

1. Identify a top-level claim to demonstrate: A statement about a 
piece of desired functionality or a quality attribute

2. Identify one or more subclaims to support a higher-level claim.

3. For each leaf-level subclaim, provide a piece of evidence to 
support the claim

• Results of testing or program analysis (e.g., “The app successfully 
handled stress testing with 1,000 user requests per second”)

• Design decisions (e.g., ”Backup servers are deployed in case the 
primary one fails” or “An interface is used to hide details about the 
format of a stock quote from its clients”)

• Empirical data (e.g., “Based on historical data, the battery is expected 
to last 3 months before failing”) 

• Procedures (e.g., “The battery is replaced regularly by the user”)



24

Assurance Case: Delivery Robot

Subclaim: Sensor 

provides accurate data

Subclaim: Controller 

generates breaking 

commands on time

Sensor 

maintenance 

procedure

Exhaustive 

input-output 

testing



25

Assurance Cases in Practice

https://safetycaseframework.aurora.tech/



26

Assurance Cases in Practice

Introduction of Assurance Case Method and its Application in Regulatory Science. Fubin Wu (2019).

14

Example: Infusion Pump Safety Assurance Case Argument Structure – Graphical Format



27

Assurance Case: Benefits & Limitations

• Provides an explicit structure to a design argument
• Encourages the designer to articulate why their design works

• Easier to navigate, inspect, and refute for reviewers

• Provides traceability between system-level claims & low-level evidence

• Challenges and pitfalls

• Completeness: How do I know whether it’s missing any subclaims?

• Effort in constructing the case & evidence: How much evidence is enough?

• System evolution: If system changes, must also recreate the case & 
evidence

• Recall: Risk-driven design!

• Build an assurance case for the most important functionalities or quality 
attributes



28

Exercise: Assurance Case for IntelliGuard

• Recall IntelliGuard from HW1

• Break into groups; pick one person’s design from HW1 

• For that design, develop an assurance case for the following top-
claim: “The intrusion detection system notifies the homeowner in 
time when a stranger appears around the house”

• For evidence, include hypothetical pieces of evidence that you 
would include (assuming you had implemented & tested the system)

• Make sure the assurance case is legible; you will share it with your 
classmates later



29

Design Review



30

Design Review

• Goals
• Improve the quality of a design by identifying and addressing flaws 

or weaknesses

• Communicate and align the understanding of the design with other 
teams and stakeholders of the system

• Indicate that the product is ready for release or the next phase of 
development

• Track changes and improvements to the system design over time

• There are no ”standard” practices or methods for design reviews

• We will discuss how we can use an assurance case to drive a 
design review process



31

Criteria for Reviewing an Assurance Case

• Soundness: Do the subclaims imply their parent claim? Are there any 
missing subclaims?

• Validity: Is the evidence strong enough to support a leaf claim? Can the 
evidence be independently verified (e.g., by re-running the test cases)?



32

Adversarial Thinking

• Think like an “attacker”, not the designer of the system

• As a reviewer, your goal is to invalidate the argument; i.e., show 
how the system may fail to satisfy the claim in certain scenarios

• For each leaf subclaim: Think of a scenario where it fails to hold 
due to insufficient evidence (validity flaw)

• For each non-leaf subclaim: Think of a scenario where all its 
children subclaims hold but it does not (soundness flaw)



33

Component Diagram for Delivery Robot

• Consider domain entities & components that are involved in 
achieving the desired functionality/quality attribute

• Q. Is there an assumption or responsibility missing from the 
argument? Should that be added as a new subclaim?



34

Criteria for Reviewing an Assurance Case

• Q. Is there an assumption or responsibility missing from the 
argument? Should that be added as a new subclaim?



35

Reviewing Evidence

• For testing & program analysis reports: Re-run the tests or 
analysis under the identical conditions (if possible) and compare the 
output. Attempt to identify inputs that produce an incorrect output 
(i.e., invalidate the subclaim).

• For design decisions: Review the design document (e.g., 
component diagram) and the code to ensure that the documented 
decisions are implemented properly in the system.

• For procedures: Check that the procedure is trustworthy; often 
requires domain knowledge!

• For empirical data: Apply proper statistical methods to ensure the 
validity of the presented data



36

Sample Review Comments

• Soundness flaw: The subclaim “Sensor provides accurate data” is 
not enough to ensure “Sidewalk robot detects pedestrians on time”, 
since the object detection model may fail to detect a pedestrian even 
if it’s given an accurate image from the sensor. 

• Validity flaw: There is not enough evidence to support the subclaim 
“Sensor provides accurate data”. Sensor might fail during 
deployment between maintenance procedures and cause the robot 
to ignore a pedestrian. 



37

Responding to Review Feedback

• Be open to feedback! The goal is to improve the design, not to 
argue that you are right (no matter what)

• But refute the feedback when appropriate! It is possible that the 
reviewer misunderstood the design/argument. Explain why the 
feedback is incorrect.

• Do nothing but put on backlog: The identified flaws might not be 
significant enough to be addressed now, but can be revisited later

• Improve the argument

• Improve the design, if the former is not possible.

• Send the revised assurance case back for a further review; repeat 
until no more feedback



38

Improving the Argument

• For each leaf subclaim: A scenario where it fails to hold (due to 
insufficient evidence) 

• Add additional pieces of evidence to support the subclaim

• For each non-leaf subclaim: A scenario where all its children 
subclaims hold but it does not

• Add a new subclaim(s) to ensure that the parent claim is implied by its 
children

• The subclaim must correspond to a domain assumption or a 
responsibility of an existing software component

• If no further evidence or subclaim can be added to fix the argument, 
then a valid argument does not exist – the design itself must be fixed!



39

Improved Assurance Case for Delivery Robot

Exhaustive input-

output testing



40

Exercise: Assurance Case for IntelliGuard

• Take (1) an assurance case and (2) a component diagram for 
IntelliGuard from another group

• Review the assurance case and identify potential flaws with respect 
to soundness and validity

• Discuss the flaws identified by the other group: (1) refute if they are 
not flaws or (2) devise ways to improve the argument or design to 
address those flaws



41

Design Review: Tips

• Be constructive! The goal is to help improve the design, not to shoot 
it down

• Don’t nitpick; look for larger problems that could lead to significant 
risks for the project 

• Take a risk-driven approach! Focus on claims about most important 
functionalities or quality attributes

• Recruit outsiders (e.g., customers, engineers from another team) 
for review, to reduce bias

• Keep a record of suggestions from the reviewers; track which of 
those suggestions have been implemented

• Do design reviews regularly, after each project milestone or iteration



42

Summary

• Exit ticket!


	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Leaning Goals
	Slide 4: Design Review
	Slide 5: Design Review in Practice
	Slide 6: Design Review at Google
	Slide 7: Request for Comments (RFC)
	Slide 8: Challenges with Design Reviews
	Slide 9: Documenting for Design Reviews
	Slide 10: Today’s Class
	Slide 11
	Slide 12: Arguing why your design works
	Slide 13: But in software…
	Slide 14: Design Argumentation
	Slide 15: Assurance Case
	Slide 16: Assurance Case: Structure
	Slide 17: Example: Sidewalk Delivery Robot
	Slide 18: Building an Assurance Case
	Slide 19: Assurance Case: Delivery Robot
	Slide 20: Building an Assurance Case
	Slide 21: Assurance Case: Delivery Robot
	Slide 22: Assurance Case: Delivery Robot
	Slide 23: Building an Assurance Case
	Slide 24: Assurance Case: Delivery Robot
	Slide 25: Assurance Cases in Practice
	Slide 26: Assurance Cases in Practice
	Slide 27: Assurance Case: Benefits & Limitations
	Slide 28: Exercise: Assurance Case for IntelliGuard
	Slide 29
	Slide 30: Design Review
	Slide 31: Criteria for Reviewing an Assurance Case
	Slide 32: Adversarial Thinking
	Slide 33: Component Diagram for Delivery Robot
	Slide 34: Criteria for Reviewing an Assurance Case
	Slide 35: Reviewing Evidence
	Slide 36: Sample Review Comments
	Slide 37: Responding to Review Feedback
	Slide 38: Improving the Argument
	Slide 39: Improved Assurance Case for Delivery Robot
	Slide 40: Exercise: Assurance Case for IntelliGuard
	Slide 41: Design Review: Tips
	Slide 42: Summary

