
17-723: Designing
Large-scale
Software Systems
Design For Reuse

Tobias Dürschmid

2Designing Large-scale Software Systems - Design For Reuse

Reusability is Strongly Linked with
Understandability
• Program comprehension takes up

58% of professional developers' time [1]
• Goal: Designing modules that can be used without

understanding how they work internally
• Design principles in this lecture do not only help to design

reusable software, but also understandable software!

[1] Xia, Xin, et al. "Measuring program comprehension: A large-scale field study with professionals." IEEE TSE (2017)

Why should I care about Reusability?

https://ieeexplore.ieee.org/iel7/32/4359463/07997917.pdf

3Designing Large-scale Software Systems - Design For Reuse

This Lecture - Reusability

• How to Design Modules To Be Reusable?

• How to Design Complex Domain Logic To Be Reusable?

• How to Evaluate Reusability?

• How does Reusability Relate to Other Quality Attributes?

Evaluate

Communicate

Generate

4Designing Large-scale Software Systems - Design For Reuse

Reusability Requirements are Specified via
Reuse Scenarios

Scenario
1. Unit of Reuse (modules)

2. Context of Reuse (who, where, when, how?)

Measure
Effort to Adapt to new Context

Type of adaption (e., configuration, code change, …)

Remember Cost-Benefit Analysis from
the Lecture on Design With Reuse

5Designing Large-scale Software Systems - Design For Reuse

The noise reduction image filter of the pencil hatching app

should be reusable for all other image stylization effects

without making any changes to the source code.

Example Reuse Scenario
Unit of Reuse

Context of Reuse

Effort of Adaption Type of Adaption

Example Domain:
Imagine Stylization Apps

6Designing Large-scale Software Systems - Design For Reuse

The noise reduction image filter of the pencil hatching app

should be reusable for processing of very large images

via end-user-adjustable parameter configuration.

Example Reuse Scenario
Unit of Reuse

Context of Reuse

Effort of Adaption Type of Adaption

Example Domain:
Imagine Stylization Apps

Adds Performance
Constraints

How to
Design Modules To Be
Reusable?
Designing Large-scale Software Systems - Design For Reuse

8Designing Large-scale Software Systems - Design For Reuse

Pattern for Reuse: Pipes & Filters

Solution: Divide a larger processing task into a sequence of

smaller, independent processing steps (Filters) that are

connected by channels (Pipes).

Problem: How to build a system that process data streams
in a reusable, composable, flexible, and independently

developable way?

Generate Evaluate

Communicate

Example: Unix Pipes allow forwarding
the output of one program into the input

channel of another program

9Designing Large-scale Software Systems - Design For Reuse

Pattern for Reuse: Pipes & Filters

In-Class Activity: Describe Reasons
why Filters are Highly Reusable!

Pipes have Simple Interfaces
(e.g., 2D Pixel Graphics)

Each Filter Does Only One Thing
(e.g., increase brightness, reduce noise)

Filters are Loosely Coupled
(i.e., each filter can be connected to any filter)

Generate Evaluate

Communicate

Edge
Detection

Filter

Color
Adjustment

Filter

Brightness
Filter

Noise
Reduction

Filter

10Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Simple, Well-Documented Interfaces

Assumes only a
2D pixel graphic

input

Reduce the complexity of the interface and the assumptions
the package makes about input data, actions, and environment.

Simple Interface Complex Interface

Noise
Reduction Filter

Noise
Reduction Filter

Noise
Parameter

Hardware
assumptions

reduce
reusability

Required
inputs can

reduce
reusability

Configuration
Parameters

increase
reusability

Generate Evaluate

Communicate

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

GPU
Context

Image
Data Base

11Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Simple, Well-Documented Interfaces

• Fewer assumptions ⇒ larger domain of possible reuse contexts

• Explicitly Document Assumptions underlying the semantics of
the interface (e.g., color space of the image being RGB or LAB,
image should be pre-filtered, or image should be small)

Reduce the complexity of the interface and the assumptions
the package makes about input data, actions, and environment.

Generate Evaluate

Communicate

Assumes only a
2D pixel graphic

input

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

12Designing Large-scale Software Systems - Design For Reuse

// DOM code to write an XML document to a specified output stream.
private static final void writeDoc(Document doc, OutputStream out) throws IOException {
 try {
 Transformer t = TransformerFactory.newInstance().newTransformer();
 t.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, doc.getDoctype().getSystemId());
 t.transform(new DOMSource(doc), new StreamResult(out));
 }
 catch(TransformerException e) {
 throw new AssertionError(e); // Can’t happen!
 }
}

Few
Arguments

Design Principle for Design for Reuse:
Simple, Well-Documented Interfaces

Generate Evaluate

Communicate
See https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/TransformerFactory.html

Requires
Setter
Call

Requires Exception Handling

How well does
Transformer
Factory support
the principle?

Reduce the complexity of the interface and the assumptions
the package makes about input data, actions, and environment.

https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/TransformerFactory.html

13Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Loose Coupling

Low Coupling High Coupling

High
Reusability

Medium
Reusability

Low
Reusability

Legend
Module

Dependency

Does not depend
on other filtersCoupling is the degree of

interdependence between modules

Avoid cyclic
dependencies

Generate Evaluate

Communicate

Each module should depend on as few components as possible.
Dependencies should be explicit and minimize assumptions.

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

Effectiveness
might depend

on contrast
and noise level

14Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Loose Coupling Coupling is the degree of

interdependence between modules

• Modules with fewer dependencies are easier to reuse,
because it’s easier to integrate them into a new context

• Cyclic dependencies prevent individual reuse

Generate Evaluate

Communicate

Each module should depend on as few components as possible.
Dependencies should be explicit and minimize assumptions.

Does not depend
on other filters

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

Effectiveness
might depend

on contrast
and noise level

15Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Loose Coupling Coupling is the degree of

interdependence between modules

Generate Evaluate

Communicate

How well does
Transformer
Factory support
the principle?

public static TransformerFactory newInstance()
 throws TransformerFactoryConfigurationError {
 String className = "org.apache.xalan.processor.TransformerFactoryImpl";
 try {
 return (TransformerFactory) Class.forName(className).newInstance();
 } catch (Exception e) {
 throw new NoClassDefFoundError(className);
 }
 }

Implicit
dependency added

public abstract void transform(Source xmlSource,
Result outputTarget) throws TransformerException

Depends on small interface
Source & Result

Adds dependency to custom
Exception classes

Each module should depend on as few components as possible.
Dependencies should be explicit and minimize assumptions.

See https://android.googlesource.com/platform/prebuilts/fullsdk/sources/android-29/+/refs/heads/androidx-recyclerview-recyclerview-selection-release/javax/xml/transform/TransformerFactory.java

https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/Source.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/Result.html
https://docs.oracle.com/javase/8/docs/api/javax/xml/transform/TransformerException.html
https://android.googlesource.com/platform/prebuilts/fullsdk/sources/android-29/+/refs/heads/androidx-recyclerview-recyclerview-selection-release/javax/xml/transform/TransformerFactory.java

16Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
High Cohesion

Each filter does
only one thingCohesion is the degree to which elements

within a module are functionally related

Elements within a module should work together to fulfill a single,
well-defined purpose.

Low CohesionHigh Cohesion

Noise Reduction
Filter Noise Reduction

& Sharpen Filter

What if I want an unsharpened image?

Pencil Hatching
Filter

Complete Image
Filter Library (1 TB)

What if I need only one filter?

Sharpening
Filter

Larger
cohesive
modules
can be

reusable too

Small
modules
tend to

be more
reusable

Generate Evaluate

Communicate

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

17Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
High Cohesion Cohesion is the degree to which elements

within a module are functionally related

Elements within a module should work together to fulfill a single,
well-defined purpose.

• Reusing a module that has multiple purposes adds
unnecessary pseudo-dependencies

• It is easier to understand a module with high cohesion

Generate Evaluate

Communicate

Edge Detection
Filter

Color Adjustment
Filter

Brightness
Filter

Noise
Reduction Filter

Each filter does
only one thing

18Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
High Cohesion

Generate Evaluate

Communicate

All about
creating XML
Transformers

How well does
Transformer
Factory support
the principle?

Cohesion is the degree to which elements
within a module are functionally related

Elements within a module should work together to fulfill a single,
well-defined purpose.

* A TransformerFactory instance can be used to create
 * {@link javax.xml.transform.Transformer} and
 * {@link javax.xml.transform.Templates} objects.
 * The system property that determines which Factory implementation
 * to create is named "javax.xml.transform.TransformerFactory”
 * This property names a concrete subclass of the
 * TransformerFactory abstract class.
 * If the property is not defined, a platform default is be used.

See https://android.googlesource.com/platform/prebuilts/fullsdk/sources/android-29/+/refs/heads/androidx-recyclerview-recyclerview-selection-release/javax/xml/transform/TransformerFactory.java

https://android.googlesource.com/platform/prebuilts/fullsdk/sources/android-29/+/refs/heads/androidx-recyclerview-recyclerview-selection-release/javax/xml/transform/TransformerFactory.java

19Designing Large-scale Software Systems - Design For Reuse

Quiz on Design Principles

Reduce the complexity of the interface and the assumptions the
package makes about input data, actions, and environment

Each module should depend on as few components as possible.
Dependencies should be explicit and minimize assumptions.

Elements within a module should work together to fulfill a single, well-
defined purpose.

Simple, Well-documented Interfaces

Loose Coupling

High Cohesion

Generate Evaluate

Communicate

How to
Design Complex Domain
Logic To Be Reusable?
Designing Large-scale Software Systems - Design For Reuse

21Designing Large-scale Software Systems - Design For Reuse

Flight Storage Manager

(De-)Serializes Flight Data
Structures to/from JSON files

JSON Mailbox

Sends a JSON file from one
server to another server

Calculator

Calculates a given formular on
numeric data tables

Flight Tax Calculator

Given Flight Details, Calculates
Air Transportation Taxes

How Reusable Are These Modules? Why?

Generate Evaluate

Communicate

22Designing Large-scale Software Systems - Design For Reuse

Module Categories (“Blood Types”)
A-Module
(Application
Module)

T-Module
(Technology
Module)

AT-Module
(Application +
Technology)

0-Module
(Independent
Module)

Software that knows
about the
application domain
and business logic
(e.g., obstacle
detection, tax
calculation,

Software that knows
about a concrete
technology (e.g.,
MongoDB, JDBC,
OpenGL, OpenCV,
Windows API, …)

Mixed application
logic and technology

No dependency on
technology or
application domain.
implements an
abstract concept,
e.g., a dictionary or
a state model

Generate Evaluate

Communicate

T AT 0A

23Designing Large-scale Software Systems - Design For Reuse

Which Blood Types Do The Modules Have?
Flight Storage Manager

(De-)Serializes Flight Data
Structures to/from JSON files

JSON Mailbox

Sends a JSON file from one
server to another server

Calculator

Calculates a given formular on
numeric data tables

Flight Tax Calculator

Given Flight Details, Calculates
Air Transportation Taxes

Generate Evaluate

Communicate

A

TAT

0

Technology
Modules

Application & Technology
Modules

Zero
Modules

T AT 0
Application

Modules

A

24Designing Large-scale Software Systems - Design For Reuse

Design Principle for Design for Reuse:
Minimize AT-Modules, Maximize 0-Modules
• Assumptions on Technologies limit Reusability to software that uses this

technologies. Software with different technology cannot reuse the module

• Assumptions on the Application Domain limit Reusability to software in

that domain. Different domains cannot reuse the module.

• Therefore: Separate Technological Concerns from

Application Concerns to avoid AT-Modules or minimize their size

Generate Evaluate

Communicate

Refinement of Single

Responsibility Principle

Technology
Modules

Application & Technology
Modules

Zero
Modules

T AT 0
Application

Modules

A

25Designing Large-scale Software Systems - Design For Reuse

Data
Base

A

T

What is Wrong With
this Design?

class Ticket {
[…]

 void save(){
 db.sql(query)
 }
}

class Seat {
[…]

 view.setGrayedOut()
[…]

}

class Flight {
[…]

 void book() {
 restAPI.send(…)
 }
}

Web API
(REST / SOAP /…)

User
Interface T T

Technology
Modules

Application & Technology
Modules

Zero
Modules

T AT 0

Booking
Manager A

Application
Modules

A

Generate Evaluate

Communicate

26Designing Large-scale Software Systems - Design For Reuse

Cannot be reused in a
context with different UI,

DB, or web API.
Technological changes

require changes in
domain logic modules.

Web API
(REST / SOAP /…)

User
Interface

Data
Base

Domain
Logic

Modules implementing
domain logic should not

have any knowledge about
the data base, the web

API, or the UI

Design Principle for Design for Reuse:
Avoid Dependencies from Large &
Complex A Modules to T Modules

Generate Evaluate

Communicate

Refinement of Dependency
Inversion Principle

Domain
Logic AT T

T

27Designing Large-scale Software Systems - Design For Reuse

Domain
Logic

Object Relational Mapping
Dependency Injection

Treat the web as a plug-in
into the system.

Design Recipe for Design for Reuse:
Invert Dependencies to the
Web, UI, and Data Base

Generate Evaluate

Communicate

Web API
(REST / SOAP /…)

User
Interface

Observer, MVC, Model-
View-Presenter

The UI, Data Base, and Web Interfaces are implementation
details that should not drive the architecture of the application

Data
Base

T T

T

A

28Designing Large-scale Software Systems - Design For Reuse

Domain
Class

Domain
Class

Framework
Class T

A

Design Recipe for Design for Reuse:
Reduce Coupling to Frameworks

Domain classes that inherit from
framework classes are not reusable

and “married” to the framework

Domain
Class

Framework
Class T

A

Add an Adapter that
serves as a layer of

indirection to decouple
frameworks from
large & complex
domain classes

Adapter ATAT

Generate Evaluate

Communicate

Frameworks are implementation details that
should not drive the architecture of the application

29Designing Large-scale Software Systems - Design For Reuse

Patterns that Support Reusability
• Decorator
• Abstract Factory
• Composite
• Observer
• Template Method

Read about
them here!

Generate Evaluate

Communicate

30Designing Large-scale Software Systems - Design For Reuse

Architectural Styles that Support Reusability
• Layers
• Pipes & Filters
• Publish-Subscribe

Read about
them here!

Generate Evaluate

Communicate

How to
Evaluate
Reusability?
Designing Large-scale Software Systems - Design For Reuse

32Designing Large-scale Software Systems - Design For Reuse

Tools for Metric Analysis

Generate Evaluate

Communicate

High-level
aggregated
metrics are
rarely useful

How useful are these metrics? Tool:
CodeClimate

33Designing Large-scale Software Systems - Design For Reuse

Tools for Metric Analysis

Generate Evaluate

Communicate

Ambiguous metrics often
 feel confusing to developers

General size metrics don’t
 reflect the design adequately

How useful are these metrics? Tool:
Codefactor

Syntactic code metrics are useful
 only if not followed blindly & the
 semantics of metrics are clear

34Designing Large-scale Software Systems - Design For Reuse

Identify Reuse Scenarios

• Think of different systems for which a module would be useful

• Identify ways in which they differ from the current system

(e.g., different domain, technology, …)

• Describe what amount of effort of adaptation would be

reasonable based on the number of expected reuse clients

Generate Evaluate

Communicate

35Designing Large-scale Software Systems - Design For Reuse

Evaluate Reuse Scenarios

• Identify assumptions that the implementation makes

about its context

• Check whether the assumptions hold for all reuse scenarios

• Identify potential challenges of reusing the system

in the new context

Generate Evaluate

Communicate

How does
Reusability Relate to
Other Quality Attributes?
Designing Large-scale Software Systems - Design For Reuse

37Designing Large-scale Software Systems - Design For Reuse

Connection To Changeability!
• Separation of software in A-modules and T-modules

increases changeability!

• Technology will change over time
(e.g., CORBA → REST, EJB → Spring, IBM Db2 → MongoDB)

• Localizing the changes required to adapt new technology to
T-modules makes it easier to modernize the software

Generate Evaluate

Communicate

SOLID

38Designing Large-scale Software Systems - Design For Reuse

Connection To Changeability!
• Loose Coupling

• High Cohesion

• Simple Interfaces

Generate Evaluate

Communicate

support Changeability}

39Designing Large-scale Software Systems - Design For Reuse

Connection To Testability

• Reusable modules are easier testable
• Low coupling increases testability

• Simple Interfaces increases testability

• Modules that do not depend on the web, DB, or UI

are easier to test

40Designing Large-scale Software Systems - Design For Reuse

Over-Engineering
• Solution is more flexible or sophisticated than needed
• Premature abstractions make it hard to find code locations

that implement a feature
• Wasted time caused by perfectionism
• Unnecessary complexity

41Designing Large-scale Software Systems - Design For Reuse

Design is confusing, cluttered, and rigid

Design is good
enough for most
practical purposes

Ideal Design

Premature
abstractions make
the software more
flexible than needed

Unnecessary
complexity makes it
hard to find code
locations that
implement a feature

You can over-do it!

Engineering Effort (applying principles from this lecture)

Code Quality
(Changeability
Readability
Reusability
Testability, …)

42Designing Large-scale Software Systems - Design For Reuse

Connection To Performance

• More reusable designs can, in some cases, be slightly slower

• However: Unless you are building embedded systems with

very strict performance requirements, the difference will be

minimal

43Designing Large-scale Software Systems - Design For Reuse

Connection To Interoperability

• Reusability & Interoperability are largely orthogonal

44Designing Large-scale Software Systems - Design For Reuse

Please Complete the Exit Ticket in Canvas!

45Designing Large-scale Software Systems - Design For Reuse

Summary
• Reusability supports understandability
• Loose Coupling, High Cohesion, and Simple Interfaces support

Reusability
• Minimize AT-Modules, Maximize 0-Modules
• Avoid Dependencies from Large & Complex A Modules to T

Modules
• Reduce Coupling to Frameworks
Credits: These slide use images from Flaticon.com (Creators: Freepik)
And www.svgrepo.com (Creators: Solar Icons, Iconsax, Giovana, Esri)

