
17-423/723:
Designing Large-scale
Software Systems
Design for Scalability
Mar 18 & 20, 2024

2

Leaning Goals
• Describe scalability as a QA of a software system and its relationship

with other QAs, such as performance, availability, and reliability.
• Specify a scalability QA in terms of load and performance metrics.
• Describe the differences between vertical and horizontal scaling.
• Describe the benefits and downsides of replication and partitioning

approaches to distributed data.
• Describe different strategies for load balancing to avoid overloading

parts of the system.
• Identify a bottleneck in the workload and apply caching to improve

the system performance.

3

Scalability

4

What is Scalability?
• The ability of a system to handle growth in the amount of workload

while maintaining an acceptable level of performance
• Why is scalability important?

5

6

7

8

9

“Twitter fail whale”

10

Twitter Redesign for Scalability
• Early Twitter architecture (~2010): Monolithic design running Ruby

on Rails, connected to MySQL databases
• Difficulty handling traffic spikes during major events (World Cup,

Super Bowl, etc.,)
• Redesign decisions

• Ruby -> JVM/Scala
• Monolith -> Microservices
• Load balancing, continuous

monitoring, failover strategies
• New, distributed database

solution (Gizzard)

https://blog.twitter.com/engineering/en_us/a/2013/new-tweets-per-second-record-and-how

11

Related Concepts
• Performance: Amount of resources (e.g., time, memory, disk space)

that the system expends to perform a function
• It’s not just about time or responsiveness (but in this class, we will mostly

talk about time-related attributes)
• It’s part of a scalability QA, but not the same!

• Availability: Degrees to which the system is available to perform its
function(s) at the request of a client

• Usually expressed in terms of probabilities (99.99% available)
• Reliability: Degrees to which the system performs its functions

correctly
• e.g., Mean time between failures (1000 hours before a sensor failure)
• Availability does not imply reliability!

12

Specifying Scalability
• The ability of a system to handle growth in the amount of workload

while maintaining an acceptable level of performance
• Workload (or simply, load): Amount of work that the system is given

to perform
• Number of client requests per second, average size of input data,

number of concurrent users, etc.,
• Performance: Amount of resources that the system expends to

perform a function
• Average response time, average throughput (i.e., number of requests

successfully processed per hour), peak response time, CPU utilization,
etc.,

13

Scalability Specification: Good & Bad Examples
• “Twitter must be able to handle 100 million additional users in the

next year”
• “The average time to load a tweet must be no more than 100 ms”
• “Twitter must be able to handle 1 million concurrent requests for

viewing tweets with an average response time of 100 ms”
• “On Prime Day, the Amazon storefront should be 100% up and

available”
• “Netflix should be able to process addition of 1000 shows per day in

its catalog with no more than 2% increase in average latency”
• “The company should achieve active daily users of 10 million by the

end of 2024”

14

Load Parameters Example: Twitter

• Post tweet: Publish a tweet to followers

• 4.6k requests/sec on average

• 12k requests/sec at peak

• View home timeline: View tweets
posted by the people that the user
follows

• 300k requests/sec on average

• Fan-out problem: Each user follows
many people & each user is followed
by many people

• Q. How would you design these two
operations?

Example from: Designing Data Intensive Applications, Chapter 1, by M. Kleppmann

15

Design Option #1: Timeline Reconstruction
• Post tweet: Insert the new tweet into a global database of tweets.
• View timeline: Reconstruct the timeline for each request - (1) look

up all the people the user follows, (2) find all the tweets for each of
these people, (3) merge & sort by time

16

Design Option #2: Timeline Cache

• For each user, maintain the current view (cache) of their timeline

• Post tweet: (1) Look up all the people who follows the user and (2)
insert the new tweet into each of their timeline

• View timeline: Inexpensive; no need to re-compute the timeline

17

Discussion: Which Option?
• Design Option #1: Reconstruct the timeline at every request
• Design Option #2: Maintain & update a cache of timeline
• Q. Which option would you prefer for better scalability, and

under what assumptions?
• What additional information about the load do you need to make

the decision?

18

Describing Performance: Common Metrics

• Throughput: Amount of work processed per time period

• Response time (RT): Time between a client’s request & response

received

• Average RT: Commonly used, but not very useful (Q. why not?)
• Percentile RT: “1.5s at 95th” means 95% of requests take < 1.5s

• Median (50th percentile, or p50): How long users typically wait

19

Performance Matters!

• Performance affects other business metrics, such as revenue,
conversions/downloads, user satisfaction/retention, time on site, etc.,

Source: The Real Cost of Slow Time vs Downtime, Tammy Everts (2014)

https://www.slideshare.net/Radware/radware-cmg2014-tammyevertsslowtimevsdowntime

20

Design Patterns for Scalability

21

Common Design Problems for Scalability
• How do we increase capacity to handle additional load? Vertical

& horizontal scaling
• How do we avoid overloading one part of the system due to

increased load? Load balancing
• How do we reduce bottleneck in the overall workload? Caching

22

Vertical vs. Horizontal Scaling
• Problem: How do we increase capacity to handle additional load?
• Vertical scaling (scaling up): Get a more powerful machine!
• Horizontal scaling (scaling out): Distribute the load across multiple

machines!

23

Vertical vs. Horizontal Scaling
• Problem: How do we increase capacity to handle additional load?
• Vertical scaling (scaling up): Get a more powerful machine!
• Horizontal scaling (scaling out): Distribute the load across multiple

machines!
• Q. What are the benefits & downsides of each approach?

• So does this mean horizontal scaling is always the better choice?

24

Vertical vs. Horizontal Scaling
• Problem: How do we increase capacity to handle additional load?
• Vertical scaling (scaling up): Get a more powerful machine!
• Horizontal scaling (scaling out): Distribute the load across multiple

machines!
• Q. What are the benefits & downsides of each approach?

• So does this mean horizontal scaling is always the better choice?

25

Vertical vs. Horizontal Scaling
• Problem: How do we increase capacity to handle additional load?
• Vertical scaling (scaling up): Get a more powerful machine!
• Horizontal scaling (scaling out): Distribute the load across multiple

machines!
• Q. What are the benefits & downsides of each approach?

• So does this mean horizontal scaling is always the better choice?
• In practice, most systems use a hybrid approach

• Vertical scaling, where possible, is simpler and more efficient
• Example: StackExchange Architecture

https://stackexchange.com/performance

26

Distributed Data

27

Digression: Relational vs. Document Model
• Relational data model: Schemas, tables & queries (e.g., SQL)

28

Digression: Relational vs. Document Model
• Relational data model: Schemas, tables & queries
• Document model: No fixed schema, semi-structured (e.g., JSON/XML)

Q. Benefits & drawbacks
of each model?
When would you choose
one over the other (in
relation to scalability)?

29

Horizontal Scaling through Distributed Data
• Distribute load across multiple machines

• Typically involves distributing & storing data across those machines
• Two ways to distribute data: Replication and partitioning
• Many systems use a hybrid approach

that combines both

30

Distributed Data: Replication
• Replication: Copy & store data across multiple machines (or
nodes), possibly in different locations.

• Fault-tolerant: If some nodes become unavailable, data can be access
from the remaining nodes

• Performance: Requests can be directed to a node that is physically
closer (reduced latency)

• Scalability: Increased load can be handled by adding more nodes with
replicated data

Q. This sounds great! What’s the catch?

31

Replication: Challenges
• Consistency: If data on one node changes, how do we ensure that

all its replicas have the same, consistent data?
• Clients may read outdated data from inconsistent nodes
• Node failures: What if some of the nodes fail before updating its data?

• There are several different approaches to dealing with these
challenges

• This is an active area of research (called distributed systems); you
can take multiple courses on this topic alone

• We will cover one well-known approach: Leader-follower model

32

Leader-Follower Model
• Designate one of the replicas as the leader; the rest are followers
• Write operations are allowed only on the leader
• When data changes on the leader, send update to every follower

33

sync. async.

Synchronous vs. Asynchronous Replication
• Synchronous: The leader waits until the follower confirms that it has

received the update
• Asynchronous: The leader sends the update and continues without

confirmation

34

Synchronous vs. Asynchronous Replication
• Synchronous: The leader waits until the follower confirms that it has

received the update
• Asynchronous: The leader sends the update and continues without

confirmation
• Q. What are the benefits & downsides of each design? What types

of applications does one approach makes more sense over the
other?

35

Synchronous vs. Asynchronous Replication
• Synchronous: The leader waits until the follower confirms that it has

received the update
• Pros: Ensures that followers have updated data. If the leader fails, latest

data can still be read from the followers
• Cons: Higher latency for the client; some followers may fail and never

return a confirmation
• Asynchronous: The leader sends the update and continues without

confirmation
• Pros: Higher performance; the leader can continue to process client

requests
• Cons: Weaker guarantees on consistency across replicas

• Hybrid model: Assign some followers to be synchronous, the others
asynchronous

36

Digression: CAP Theorem
• Consistency: Clients always read the latest

data
• Availability: Services are available for clients

to access
• Partition tolerance: System continues to

operate despite network failures
• CAP theorem: Choose two out of three

• e.g., if a network failure occurs (and system
tolerates it), choose consistency or availability

• Demonstrates trade-offs between different qualities of scalable systems
• But somewhat controversial; some people argue it as being misleading

37

Distributed Data: Partitioning
• Partitioning (also called sharding): Split the data into smaller,

independent units & distribute them across nodes
• Useful and necessary when one dataset is too large to be fit onto a single

node (i.e., replication alone is not sufficient!)
• Usually combined with replication: Each partition is replicated stored across

multiple nodes

38

Distributed Data: Partitioning

• Partitioning (also called sharding): Split the data into smaller,
independent units & distribute them across nodes

• Useful and necessary when one dataset is too large to be fit onto a single
node (i.e., replication alone is not sufficient!)

• Usually combined with replication: Each partition is replicated stored across
multiple nodes

• Design considerations
• How to partition the data (key-based vs. hash-based)
• How to rebalance partitions (when new data is added over time)
• How to route client requests to the right partition (e.g., Zookeeper)
• More details in the assigned reading (Chapter 6, Kleppman)

39

Summary: Vertical vs. Horizontal Scaling
• Vertical and horizontal scaling are two major ways of adding capacity

to a system
• Horizontal scaling typically involves distributing data across multiple

nodes, to allow load to be divided among the machines
• Replication and partitioning are two common ways of distributing data
• Despite multiple benefits (performance, scalability, fault-tolerance),

distributing data introduces new challenges into the design task
• Start with vertical scaling if possible! It’s simpler and more efficient

40

Exercise: Designing Movie Streaming Service
• Sketch a design of a movie streaming service (e.g., Netflix), focusing

on two operations: Browsing recommended movies and playing a
movie

• Questions to discuss:
• What data do we need store for the operations?
• What type of data model (relation vs. document) for which data?
• What type of scaling (vertical, horizontal, or both) do we apply?
• How do we distribute data (replication, partitioning, or both)?
• If replication is used, synchronous vs. asynchronous replication?

41

Load Balancing

42

Common Design Problems for Scalability
• How do we increase capacity to handle additional load? Vertical &

horizontal scaling
• How do we avoid overloading one part of the system due to

increased load? Load balancing
• How do we reduce bottleneck in the overall workload? Caching

43

Load Balancing (LB)
• The process of distributing workload across multiple machines, to avoid

overloading parts of the system

Image source: https://www.cloudflare.com/learning/performance/what-is-load-balancing/

44

Load Balancing (LB)
• The process of distributing workload across multiple machines, to avoid

overloading parts of the system
• Benefits:

• Scalability: Handle high workload by distributing them evenly
• Availability: Run maintenance & upgrades without application downtime
• Performance: Redirect client requests to a geographically closer node
• Security: Monitor, identify, and block problematic traffic (e.g., denial-of-

service attacks)

45

Types of LB Algorithms

• Static LB methods
• Use fixed rules that are independent of the current state of the nodes
• Easy to set up & can be made very efficient, but only if the actual

workload matches the expected pattern

• Dynamic LB methods
• Dynamically decide how to distribute traffic based on the current state
• State information: For each node, amount of utilization, number of

outstanding requests, average response time, etc.,
• More complex to design & deploy, but also more robust to varying

workload

46

Static LB Algorithms
• Round-robin

• Assign client requests to the nodes in the round-robin fashion
• Q. Possible downside?

47

Static LB Algorithms
• Round-robin

• Assign client requests to the nodes in the round-robin fashion
• Downside: Disregards the capacity (e.g., processing power) differences

between the nodes
• Weighted round-robin

• Round-robin, but each node is also weighted based on its capacity; nodes
receive amount of load in proportion to their weights

• IP hash method
• Compute a hash of the client’s IP address & map requests to the node

with the corresponding hash
• Useful for ensuring consistent connection between a specific pair of client

and machine

48

Dynamic LB Algorithms
• Least connection

• Check the number of connections to the nodes & assign task to the least
busy nodes (can also be weighted based on their capacity)

• Average response time
• Monitor the average respond time (RT) for each node & assign task to the

ones with the fastest RT
• Resource-based

• Measure available CPU & memory on each node & assign task to the
ones with the most available resources

• A hybrid of one or more of these

(Animation of LB methods)

https://levelup.gitconnected.com/the-essential-guide-to-load-balancing-strategies-and-techniques-cb17f0d219ee

49

Caching

50

Common Design Problems for Scalability
• How do we increase capacity to handle additional load? Vertical &

horizontal scaling
• How do we avoid overloading one part of the system due to

increased load? Load balancing
• How do we reduce bottleneck in the overall workload? Caching

51

Caching
• Store and serve a subset of data in a special storage area (e.g., RAM)

that enables faster access
• Improve application performance & reduce the load on the backend
• Can be applied at different layers and locations within a system: Client-

side, network, server-side, database, hardware, etc.,

52

Source: https://aws.amazon.com/caching/

https://aws.amazon.com/caching/

53

Application-layer Cache
• Design decision: Which data do we serve through cache?
• Monitor & identify bottleneck in the workload
• Determine: What are some frequently requested or displayed data?
• Example: E-commerce site

• Site-wide data: Top selling products, promotions, pre-rendered HTML (for
home page)

• User-specific data: Recommended products, shopping cart status, recent
order history

• Computations based inventory analysis: Stock availability, price trends
• Can be cached, to avoid redoing computation (e.g., database queries)

and reduce response time

54

Key-Value Store
• Mapping from a key value (e.g., hash of a request) to a data object
• Simple structure (recall: document data model) & fast lookup; used to

serve frequently accessed data
• Typically stored in-memory to optimize access time (e.g., Redis,

memcached)

55

Key-Value Store

• Mapping from a key value (e.g., hash of a request) to a data object

• Simple structure (recall: document data model) & fast lookup; used to
serve frequently accessed data

• Typically stored in-memory to optimize access time (e.g., Redis,
memcached)

56

Content Delivery Network (CDN)
• A set of network nodes distributed

across geographical locations
• A third-party service that allows an

application to deliver a cache of
data (e.g., videos, webpages,
images, etc.,) to its users

• Application uploads data to be
served by a CDN provider

• The provider handles delivery of
content to customers from nearby
nodes

Source: How the Cloud and CDN Architecture Works for Netflix

https://teamresellerclub.medium.com/how-the-cloud-and-cdn-architecture-works-for-netflix-8f3d17906782

57

Content Delivery Network (CDN)

• Benefits

• Improves performance and

scalability, without need to build

own infrastructure

• Global reach; improved search

engine rankings

• Drawbacks

• Costly (> $0.10 per GB)

• Data stored on third-party nodes;

potential privacy & security issues

• Dependency on another network;

additional point of failure

Source: How the Cloud and CDN Architecture Works for Netflix

https://teamresellerclub.medium.com/how-the-cloud-and-cdn-architecture-works-for-netflix-8f3d17906782

58

“…the websites of UPS, USAA, Home Depot, HBO
Max and Costco were also among those affected.
The websites of British Airways, GoDaddy, Fidelity,
Vanguard and AT&T were among those loading
slowly.

The cause of the outage, the latest major Internet
outage this summer, was linked to Akamai
Technologies, the global content delivery network
based in Cambridge, Mass.”

59

Exercise: Designing Movie Streaming Service
• Sketch a design of a movie streaming service (e.g., Netflix), focusing

on two operations: Browsing recommended movies and playing a
movie

• Questions to discuss:
• What data do we need store for the operations?
• What type of data model (relation vs. document) for which data?
• What type of scaling (vertical, horizontal, or both) do we apply?
• How do we distribute data (replication, partitioning, or both)?
• If replication is used, synchronous vs. asynchronous replication?
• Which client requests/results/data do we cache?

60

Summary: Load Balancing & Caching
• Load balancing: Avoid overloading by distributing workload across

nodes
• Caching: Serve frequently accessed data from a special storage for

faster delivery
• Essential part of most modern large-scale systems!
• You probably won’t need to (and shouldn’t) implement your own LB or

caching solutions; many web/DB frameworks support these features
• But application-specific decisions about what data to cache & where to

place load balancer are important!

61

Microservices & Scalability

62

Microservice Architecture

• Decompose system into multiple, deployable units of services, typically
developed by independent teams

• User requests are routed to the appropriate service
• Services communicate directly or through a message broker

63

Microservice Architecture

• Q. What are the benefits of a microservice architecture with respect
to scalability?

• Easier to scale a specific service(s) instead of the entire system

64

Recall: “Monolith First”

https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith

https://martinfowler.com/bliki/MonolithFirst.html

65

Design for Scalability: Closing Thoughts
• No generic, one-size-fits-all scalable design (“magic scaling” sauce).
• Many factors to consider: Volume of reads & writes, complexity of data to

store, response time requirements, access patterns, or some mix of these
• Handling 100,000 requests per second, each 1 kB in size vs. 3 requests per

minute, each 2 GB in size – same data throughput, but very different design!

• An architecture that scales well for a particular application is built around
assumptions about load patterns (e.g., which operations will be common and
which will be rare)

• If those assumptions turn out to be wrong, the engineering effort for scaling is at
best wasted, and at worst counterproductive.

• In an early-stage startup or an unproven product, it’s more important to iterate
quickly on product than to scale to some hypothetical future load!

66

Summary
• Exit ticket!

