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Logistics

• M4 released

• Two deadlines

• April 2: Implement a prototype of your service

• April 9: Integrate the services into an end-to-end system
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Leaning Goals

• Understand different ways in which a system may fail to meet its 
requirements and quality attributes

• Specify robustness as a quality attribute of a system

• Describe the differences between robustness, fault-tolerance, 
resilience, and reliability

• Apply fault tree analysis to identify possible root cause of a system 
failure

• Apply HAZOP to identify possible component failures and their 
impact on the system 

• Apply design patterns for improve the robustness of a system
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What can possibly go wrong with my system?
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• Shared phenomena: Interface between the world & software

• Software can influence the world only through the shared interface

• Beyond this interface, we can only assume how the entities in the 
world will behave

Recall: World vs. Machine
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Recall: Satisfaction Argument

“If my software is implemented 

correctly (SPEC) and the world 

behaves as assumed (ASM), 

then the system should fulfill its 

requirement (REQ)”

• Requirement (REQ): What the system must achieve, in terms of desired 
effects on the world

• Specification (SPEC): What software must implement, expressed over the 
shared interface

• Domain assumptions (ASM): What’s assumed about the world; bridge the 
gap between REQ and SPEC
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• Q. What are some ways in which the system may fail to satisfy 
this argument?

What can go wrong in my system?

“If my software is implemented 

correctly (SPEC) and the world 

behaves as assumed (ASM), 

then the system should fulfill its 

requirement (REQ)”
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• Missing or incorrect specifications (SPEC)

• Violated specifications, due to bugs or faults in software (SPEC)

• Missing or incorrect assumptions (ASM)

• Missing or incorrect requirements (REQ)

What can go wrong in my system?
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Example: Lane Keeping Assist

• Requirement (REQ): The vehicle must be prevented from veering off the lane.

• Assumptions (ENV): Sensors are providing accurate information about the lane; 
driver responses on time when given a warning; steering wheel is functional

• Specifications (SPEC): Lane detection accurately identifies the lane markings; 
controller generates correct steering commands to keep the vehicle within lane

Q. What can go wrong?
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Recall: Lufthansa 2904 Runway Crash (1993)
• Reverse thrust (RT): Decelerates plane 

during landing

• What was required (REQ):
RT is enabled if and only if plane is on the 
ground

• What was implemented (SPEC):
RT is enabled if and only if wheel turning

• What was assumed (ENV):
Wheel is turning if and only if it’s on ground

• But runway was wet due to rain
• Wheel failed to turn even when on ground

• Assumption (ENV) was incorrect!

• Pilot attempted to enable RT, but it was 
overridden by the software

• Plane went off the runway and crashed
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“…the websites of UPS, USAA, Home Depot, HBO 
Max and Costco were also among those affected. 
The websites of British Airways, GoDaddy, Fidelity, 
Vanguard and AT&T were among those loading 
slowly.

The cause of the outage, the latest major Internet 
outage this summer, was linked to Akamai 
Technologies, the global content delivery network 
based in Cambridge, Mass.”



12

• A typo by a network engineer shuts down many S3 servers (2017)

• Major websites (Slack, Venmo, Trello…) down for 4 hours; $150M loss

• After the incident: Added safeguards to prevent similar failures & ensure fast 
recovery
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Another Example: Panama City Hospital (2000)

• Therapy planning software by Multidata Systems

• Theratron-780 by Theratronics (maker of Therac-25)

• Shielding blocks: Inserted into beam path to protect healthy tissue

• Therapist draws block shapes; software computes amount of radiation dose
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Example: Panama City Hospital
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Example: Panama City Hospital

21 patients injured; 8 deaths
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Blame the user or software?

• Lawsuits against the software company and hospital staff

• Multidata Systems:
“Given [the input] that was given, our system calculated the 
correct amount, the correct dose. And, if [the staff in 
Panama] had checked, they would have found an 
unexpected result.”

• Three therapists charged & found guilty for involuntary 
manslaughter; barred from practice for several years
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Being robust against possible failures

• No system will ever be “perfect”
• The environment will sometimes behave in unexpected ways, violating 

assumptions (ASM)

• Software will have bugs and fail from time to time, violating its 
specification (SPEC)

• Even when these abnormal events occur, we want our systems to 
behave in an acceptable manner 

• Even if a user makes a mistake, this should not lead to a safety disaster

• An off-by-one error should not lead to an entire rocket crashing

• Even if some of the servers shut down, the system should continue to 
provide critical services

• Q. How to design systems to be robust against abnormal events?
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Robustness
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Robustness

• The ability of a system to provide an acceptable level of service even 
when it operates under abnormal conditions

• Acceptable service: Functionality or quality attribute (of high 
importance) to be preserved, such as:

• Safety: “No unsafe level of radiation delivered to the patient”

• Performance: “The 95th-tile response to client requests is at most 200ms”

• Availability: “The patient record database is available 99% of the times”

• Abnormal conditions: An event or a condition that is outside of an 
expected, normal behavior, such as:

• “The nurse deviates from the treatment instructions”

• “The sensor provides an image with a significant amount of blur” 

• “The database is unresponsive and fails to store new appointments”
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Related Concepts

• Fault-tolerance: Ability of a system to provide acceptable service even 
when one or more of its components exhibit a faulty behavior

• Typically about internal faults within a system

• In this class, robustness covers both internal & external faults

• Resilience: Ability of a system to recover from an unexpected failure

• Focus is on recovery instead of prevention

• Reliability: Ability of a system to provide acceptable level of service 
over a period of time

• Typically measured as a “mean time between failures” (MTBF); e.g., 1 
system failure over 1000 hours

• Robustness is necessary to achieve reliability
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Specifying Robustness: Good & Bad Examples

• The radiation therapy system should never deliver more than a safe 
amount of radiation even under data entry errors 

• The autonomous vehicle must operate even under a severe weather

• The scheduling app must process appointments even if the connection 
to the central database is lost

• Amazon must provide provide a response time less than 100ms even 
when the number of customers spikes above an expected threshold

• The package delivery drone should never drop a package at a wrong 
location

• The autonomous vehicle must avoid hitting a pedestrian even if an 
object detection model fails to recognize it
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Failure Analysis
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Failure Analysis

• What can possibly go wrong in my system, and what is potential impact 
on system requirements?

• Systematically analyze a design and identify different scenarios in 
which the system may fail to satisfy its requirements 

• A number methods, developed and routinely applied in many 
engineering disciplines

• Fault tree analysis (FTA)

• Hazard and operability study (HAZOP)

• Failure mode & effects analysis (FMEA)

• Why-because analysis

• ...
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Fault-Tree Analysis (FTA)

• Fault tree: Specify relationships between 
a system failure (i.e., requirement violation) 
and its potential causes

• Identify sequences of events that result in a 
failure

• Prioritize the contributors leading to the 
failure

• Inform decisions about how to (re-)design 
the system

• Investigate an accident & identify the root 
cause

• Often used for safety & reliability, but can 
also be used for other types of QAs (e.g., 
poor performance, security attacks…)
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Elements of Fault Trees

• Event: A fault or an undesirable event

• Non-basic event: An event that can be explained in terms of other events

• Basic event: No further development or breakdown; leaf node in the tree

• Gate: Logical relationship between an event & its immediate subevents

• AND: All of the sub-events must take place

• OR: Any one of the sub-events may result in the parent event
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Elements of Fault Trees

• Every tree begins with a TOP event 
(typically a requirement violation or 
a hazardous event)

• Every non-basic event is broken 
into a set of child events and 
connected through an AND or OR 
gate

• Every branch of the tree must 
terminate with a basic event
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What can we do with FTA?

• Qualitative analysis: Determine 
potential root causes of a failure 
through minimal cut set analysis

• Quantitative analysis: Compute 
the probability of a failure based on 
the probabilities of the basic events
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Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient 
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained 
by removing a basic event.

Minimal cut sets = {

 ??

}
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Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient 
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained 
by removing a basic event.

Minimal cut sets = {

  {Lamp 1 burned, Lamp 2 burned},

  {Switch failed},

  {No V in network},

  {Fuse burned}

}
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Failure Probability Analysis

• To compute the probability of the 
top event:

• Assign probabilities to basic 
events (based on data analysis 
or domain knowledge)

• Apply probability theory to 
compute probabilities of 
intermediate events through 
AND & OR gates

• Alternatively, compute the top 
event probability as a sum of 
prob. of minimal cut sets

• Q. This is difficult to do with 
software – why?
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Example: Autonomous Train
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Example: Autonomous Train

• Requirements: The train shall not depart all doors are closed. The 
train shall not trap people between the doors.

• Train uses a vision-based system to identify people in the door

• Use a fault tree to identify possible ways in which the person may be 
trapped in a door.



33

FTA Example: Autonomous Train

Q. What are some of 

the minimum cut sets 

in this tree?
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FTA Example: Autonomous Train

Note: Basic events 

correspond to a violation 

of a specification (SPEC) 

or an assumption (ASM)!
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FTA Exercise: Lane Keeping Assist

• Requirement: The vehicle must be prevented from going off the lane.

• TOP event: “Vehicle fails to stay within the lane”

• Apply FTA to identify possible causes of this failure
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FTA Exercise: Lane Keeping System



37

FTA: Benefits & Caveats

• In general, building a “complete” tree is impossible
• There are probably some faulty events that you missed (i.e., 

”unknown unknowns”)

• Domain knowledge is crucial for improving coverage 

• Talk to domain experts to identify important and common basic 
events for your application domain

• FTA is still very valuable for designing robust systems!

• Forces you to think about & explicitly document possible failure 
scenarios

• The outcome is a good starting basis for designing mitigations 
(more on this in the next lecture)
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Hazard and Operability Study (HAZOP)

• Goal: Identify component faults and hazards (i.e., system failures ) 
through systematic, pattern-based inspection of component functions
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HAZOP
• HAZOP is a bottom-up method to 

identify potential failures: It starts from 
individual components

• FTA is a top-down method: It starts 
from a top-level failure and links it to 
component-level faults

• HAZOP process:

• For each component, specify the 
expected behavior of the 
component (SPEC)

• Use a set of guide words to 
generate possible deviations from 
expected behavior

• Analyze the impact of each 
generated deviation: Can it result in 
a system-level failure?
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HAZOP Example: Emergency Braking (EB)

• Component: Software controller for EB
• Expected behavior (SPEC): If the ego vehicle is too close to the leading 

vehicle, generate a maximum amount of braking to prevent collision
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HAZOP Example: Emergency Braking (EB)

• Expected: EB must apply a maximum braking command to the engine. 

• NO OR NOT: EB does not generate any braking command.

• LESS: EB applies less than max. braking.

• LATE: EB applies max. braking but after a delay of 2 seconds.

• REVERSE: EB generates an acceleration command instead of braking.
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Another Example: Payment Service

• Component: Payment 
service for a shopping site

• Input: Order details, 
customer billing 
information

• Expected behavior: 
Charge customer & 
update order status to 
“success”

• (Note: This is a contract 
specification for the 
component!)
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Another Example: Payment Service

Guide Word Deviation Possible 

Cause(s)

Impact Design Change

NO/NOT Payment not 

processed

Missing payment 

info from customer

Customer 

complaint; possible 

sale loss

Input validation on 

the frontend UI

MORE Duplicate payment 

processed

Accidental double 

click by customer

Double charge to 

the customer

Implement 

idempotency with 

unique request IDs

LATE No response from 

payment service

3rd party payment 

gateway timeout

Customer quits; 

possible sale loss

Implement retry 

with exponential 

backoff; failover to 

backup gateway

INSTEAD Wrong payment 

amount deducted

Program bug Incorrect billing to 

the customer

Validate amount 

before processing

PART OF Customer order 

status still 

“pending”

DB transaction 

failure

Customer 

complaint; possible 

sale loss

Use atomic 

transactions, 

rollback on failure
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HAZOP Exercise: Lane Keeping Assist

• Component: ML model for lane detection
• Expected behavior (SPEC): Given a sensor image of the ground, the ML 

model detects the presence/absence of lane markings

• Apply HAZOP guidewords to identify different ways in which this 
component might deviate from expected behavior 
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HAZOP: Benefits & Limitations

• Encourages systematic reasoning about component faults and 
their impact

• Can be used to derive basic events, to be used for FTA

• i.e., component faults are possible causes of a TOP event in FTA

• Guidewords are useful, but not perfect; they won’t cover every 
possible component fault

• Like FTA, it requires human judgement & domain knowledge to:

• Determine whether a particular guideword is relevant

• Analyze the impact of a component fault on the overall system
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Design Patterns for Robustness
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Design Patterns For Robustness

• Having identified possible failure scenarios, how do we re-design the 
system to improve its robustness?

• Many design patterns for robustness! We will cover:

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Guardrails

• Goal: Protect a system/component from unexpected inputs or faulty outputs

• Input monitor: Check for an unexpected or potentially risky input

• If unwanted input is detected, discard or pre-process it to a safe value

• Goal: Improve robustness against external faults

• Output monitor: Check for a potentially faulty output

• If fault is detected, discard or post-process it to a safe value

• Goal: Improve robustness against internal faults

System/

Component
MonitorMonitor

input
output

(post-processed)
input 

(pre-processed)

output
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Input Monitor: Precondition Checking

• Precondition: A condition 
that is expected of an input 
for the component to function 
correctly

• Identify and clearly document 
all preconditions over input 
parameters

• Check whether input satisfies 
the preconditions; if not, 
perform safe error handling

• e.g., throw an error to the 
client and/or return a safe 
default response 
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Input Monitor: Interlock

• Disable actions from being performed by a client/user under a certain context

• Examples

• Disable the nurse from entering a radiation dose higher than a safe threshold

• Disable an untrusted, third-party app from invoking critical OS functions

• Disable an admin user of scheduling app from reading patient info in the central DB
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Output Monitor: Doer-Checker Pattern

• Doer: Component carrying out a task 

• Checker: Check the output by Doer and override it if it is considered 
faulty or unsafe

• Checker should be well-tested and verified for reliability

• Usually, this means Checker is much simpler than Doer!



53

Doer-Checker Pattern: Example

• ML-based controller (Doer): Generate 
commands to steer the vehicle

• Complex ML model; highly efficient

• But poor performance over 
unexpected scenarios/inputs

• Safety controller (Checker): Check 
action from ML controller

• Overrides with a safe default action if 
ML action is risky

• Simpler, based on verifiable, 
transparent logic; performs 
conservative steering control

Runtime-Safety-Guided Policy Repair. Zhou et al. (2020)
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Doer-Checker Pattern: Example

• (a) Yellow region: Slippery road, ignored by ML -> Causes loss of traction

• (b) Checker: Monitor detects lane departure; overrides ML with a safe 
steering command
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Another Example: LLM Guardrails
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Another Example: LLM Guardrails

Amazon AWS: Build safe and responsible generative AI applications with guardrails

Both input & 

output monitors!

https://aws.amazon.com/blogs/machine-learning/build-safe-and-responsible-generative-ai-applications-with-guardrails/
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Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Redundancy

• Goal: If a component fails, continue to provide the same service to clients

• Use redundant components to detect and/or respond to a fault

• Effective only if redundant components fail independently

• Common types of redundancy
• Hot Standby: Standby watches & takes over when primary fails
• Voting: Select the majority decision from multiple components

Q. Why use one 

over the other?
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SW Redundancy: N-Version Programming

• Create different versions of a program from a shared specification

• Deploy them in parallel and take their majority or merge as final output

• Approach: Achieve independence through diversity in implementations
• Developed by different teams, using different languages, libraries, and algorithms

• Q. How well does this work in practice? What are its potential downsides?
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N-Version Programming: Limitations

• But in practice, independence of failures is rarely achieved

• Different teams make similar types of mistakes when working with the same 
specification!

• Overall, little improvement in reliability for high cost of developing & 
maintaining multiple versions

An experimental evaluation of the assumption of independence in multi-version programming. Knight & Leveson (1986)
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Redundancy Example: Sensor Fusion

• Combine data from a wide range of input sensors

• Provides partial information even when some sensors are faulty

• A critical part of modern autonomous systems (self-driving cars, robotics, 
IoT…)
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Exercise: Autonomous Train

• Requirements: The train shall not depart all doors are closed. 
The train shall not trap people between the doors.

• ML-based system to detect people & control door closings

• Consider the failure scenarios identified earlier using FTA

• Design ways to improve its robustness using the patterns

Guardrails: 

Precondition checking, 

interlock, doer-checker 

pattern

Redundancy: Standby, 

voting, sensor fusion,
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Recall: FTA for Autonomous Train
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Robustness Improvement as Modifications to FTA

• Remove or reduce the likelihood of basic events

• Increase the size of cut sets by requiring additional basic events to occur 



65

Adding Mitigations
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Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Recall: Coupling

• Coupling: Component A is coupled to B (or “A depends on B”) if a 
change or a fault in B affects the correct functioning of A

• In general, loose coupling is desirable: If A does not depend on B, 
then B can be changed without affecting A

• Conversely, tight, unnecessary coupling is usually bad: If A depends 
on B, and B changes or fails, then A could also fail!
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Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours
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Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours

• Swissair Flight 111, 1998

• In-flight entertainment (IFE) shared 
wiring with main systems

• Overheats & causes a widespread fire

• 229 passengers killed
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Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours

• Swissair Flight 111, 1998

• In-flight entertainment (IFE) shared 
wiring with main systems

• Overheats & causes a widespread fire

• 229 passengers killed

• Automotive Systems

• Main components connected through a 
common CAN bus; no access control

• Can control brake/engine by playing a 
CD with malicious music files

Comprehensive Experimental Analyses of Automotive Attack Surfaces. Checkoway et al. (2011)
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Separation: Circuit Breaker

• Goal: Prevent cascading failures by 
removing a connection from a failed 
component

• Circuit breaker: A wrapper between a 
client & a component that might fail 
(“supplier”)

• If the failure persists, “trip” the circuit 
breaker by preventing further 
connections

• Assumes that the failure will be 
resolved after a timeout period; reset 
& try again
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Separation: Circuit Breaker

• If the failure persists, “trip” the circuit 
breaker by preventing further 
connections

• Threshold for # retries before tripping

• After a reset timeout, try to reach the 
supplier again

• If successful, “close” the breaker and 
allow the client to connect again

• Client must implement its own logic for 
dealing with situations when the 
breaker is open

https://martinfowler.com/bliki/CircuitBreaker.html
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Netflix Hystrix: Circuit Breaker Library

Netflix: Making the Netflix API More Resilient

https://netflixtechblog.com/making-the-netflix-api-more-resilient-a8ec62159c2d
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Separation: Bulkhead Pattern

• Prevent a failure in one service from propagating by isolating 
resources for different services from each other
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Separation: Bulkhead Pattern

• Multiple services sharing a common set of server resources (e.g., 
threads, CPU, memory, database)

• When one service is overloaded due to an unexpected demand, it 
might prevent other services from being available to clients!

Resource Pool

(threads, CPU, database)

View Order

Service

Create Order 

Service
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Separation: Bulkhead Pattern

• Separate the resource pool into multiple, isolated partitions
• Can be done dynamically depending on the level of service demands

• Benefit: Overload in one service has limited impact on the other services

• Libraries and frameworks available for implementing bulkheads (e.g., 
Resilience4j for Java)

View Order

Service

Create Order 

Service

Resource 

Pool A

Resource 

Pool B
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Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Graceful Degradation (Fail-soft)

• Goal: When one or more component fails, temporarily reduce system 
functionality or performance of the system

• instead of shutting down the entire system (fail-safe)

• Approaches: When a component fails,

• Return a pre-determined, degraded response to client

• Disable the service but continue to offer other services

degraded response
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Graceful Degradation: Examples

• Content streaming: In a network failure or congestion, stream a low-
resolution version of a media file

• Web page rendering: If certain Javascript libraries are missing on the 
client’s machine, load a basic, HTML-only version

• Denial-of-service (DoS) attack: If a server becomes overwhelmed due 
to an attack, re-route the traffic to other available servers using a load 
balancer (slower performance)

• Buffering in a chat/e-mail client: If a network connection is lost, buffer 
the messages and send them once it becomes available again 
(delayed delivery)

• Q. Other examples?
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Graceful Degradation: Another Example

• Self-driving vehicle with multiple sensors (Lidar & camera)

• When a sensor fails, degrade performance but preserve safety by increasing 
distance to the leading object

• There is a limit on how far system can be degraded! When enough faults occur, fail 
safely by shutting down



87

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Human in the Loop

• Goal: Prevent or recovery from system/component failures through human 
intervention

• An operator monitors the output of a component (“controller”) and intervene 
if the output action is potentially faulty

actuatesense

ActuatorSensor

World
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Human in the Loop: Examples

• Remote operator for self-driving vehicles
• Overtake in scenarios where the system (e.g., ML-based controller) is 

unable to make confident decisions
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Human in the Loop: Examples

• Event monitoring & alerting

• Monitor for certain events (e.g., workload spikes) and send alerts to an engineer 
for intervention

• Several modern frameworks available (e.g., Prometheus, Grafana, Thanos)
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Human in the Loop: Challenges

• Q. Challenges/limitations?
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Human in the Loop: Challenges

• Notification fatigue, complacency
• After frequent alarms, human may ignore/take them less seriously

• Deciding when to allow or disallow intervention by human
• Consider (slow) human reaction time: Does it make sense to rely on 

the human for a resolution?

• Recall: Humans also make mistakes! Can we rely on them to carry 
out the task correctly?

• Mental model mismatch

• Does the human have an accurate understanding of the system state 
when intervening?

• (More on this in “Design for usability” lecture)
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Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions
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Undoable Actions

• Goal: Provide a way for the system to reverse the effect of an 
erroneous action

• Design the system to make certain (critical) actions undoable 

• If the system reaches an undesirable state, revert back to the 
previous desirable state
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Undoable Actions: Examples

• Version control systems: Undo changes to codebase & revert back 
to a previous snapshot of a repository 

• Database transactions: Rollback to a previous database state if a 
transaction fails; ensures integrity of the data

• Graphics/text editors: Undo previous editing actions (e.g., ”delete”)

• E-mail client: “Undo” send feature in Gmail (what is its limitation?)

• Factory resets: Mobile devices or computers, to remove effect of 
malware or data corruption

• Q. Examples of systems where undoing an action is 
difficult/impossible?
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Undoable Actions

• Goal: Provide a way for the system to reverse the effect of an 
erroneous action

• Design the system to make certain (critical) actions undoable 

• If the system reaches an undesirable state, revert back to the 
previous desirable state

• Challenges

• Not every action can be undone; some effects are irreversible 

• Undoing action adds complexity: Must keep track of a history of past 
actions and system states

• Delayed undo: It may be too late before determining when an action 
should be reversed
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Summary: Design Patterns for Robustness

• We talked about different patterns/strategies for improving robustness

• There’s no silver bullet! Different strategies are suitable for different 
contexts and applications

• Each pattern will also increase the overall system complexity and add to 
the development cost

• In practice, it is impossible to predict and prevent every possible failure 

• Failure analysis methods like FTA and HAZOP help, but also require 
domain knowledge

• But systematically thinking about possible failures & mitigations during 
the design is a critical step! 

• If you don’t design for robustness, your system is unlikely to be robust by 
“accident”
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Evaluating Robustness

• Having designed a system for robustness, how do we test that a 
system is robust against actual failures?

• Fault injection

• Deliberately introduce a failure(s) into a component and observe 
how the rest of the system responds

• Chaos engineering

• A type of fault injection approach for evaluating system robustness 
in a production-like environment
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Chaos Engineering

• Goal: Evaluate the robustness of 
a system under realistic failures

• Typically involves injecting faults 
into a system under production 
or production-like environment 

• Benefit: Test failures that are 
difficult to replicate or simulate 
under test environment

• Risks: Can potentially impact 
clients/customers; must be done 
carefully to minimize negative 
impact
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Chaos Engineering

• Chaos experiments
• Create a hypothesis about system 

behavior under a failure

• Designate parts of the system as 
control vs. experimental groups 

• Inject a failure into the experimental 
group

• Measure and compare a desired 
metric (e.g., response time, output 
quality, etc.,) across groups

• Improve the design to deal with the 
failure (e.g., add redundancy); repeat
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Designing a Chaos Experiment

• Step 1: Develop a hypothesis for the experiment
• Hypothesis: The system can maintain a desired quality attribute when it 

encounters a certain type of failure (i.e., a robustness requirement!)

• Type of failure to inject – examples:

• Send malicious commands/requests to a service

• Shutdown a selected set of servers/services

• Introduce a delay in server response

• Remove connections between services

• Disable database operations (write, read)

• Quality attribute to maintain – examples:

• Availability: The scheduling API continues to respond to client requests

• Performance: Response time < 100 ms
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Designing a Chaos Experiment

• Step 1: Develop a hypothesis for the experiment
• Hypothesis: The system can maintain a desired quality attribute when 

it encounters a certain type of failure

• Hypothesis examples: 

• “The movie streaming service will continue to provide video streaming 
even if the recommendation database is unavailable”

• “The autonomous vehicle maintains a safe distance other vehicles even 
when its LiDAR becomes faulty”

• “The shopping site must provide provide a response time less than 
100ms when no more than 10% of its servers are unreachable”
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Designing a Chaos Experiment

• Step 2: Designate control vs. experimental group
• Experimental group: Part of the system exposed to the failure

• Control group: Parts that are shieled from the failure; act as a 
baseline for normal system behavior

• Goal: Minimize the disruption on customer-facing services

• Select a small subset of replica servers as the experimental group, or

• Create a replica of an entire production system (more costly!)

• Ensure that a failure does not propagate to the control group/rest of 
the system
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Designing a Chaos Experiment

• Step 3: Inject the failure into the experimental group & compare the 
metrics across the two groups

• Game day: An event specifically scheduled to perform chaos 
experiments 

• Similar to “fire drills”

• Scheduled regularly (e.g., monthly), to help the organization/team 
members build “muscle memories” to deal with potential failures

• Typically, developers are not told which type of failure will be injected

• Encourages them to deliberately design the system to be ready for 
failures!
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Designing a Chaos Experiment

• Step 4: Redesign the 
system based on the 
experimental result; re-
run the experiment to 
check improvement

• Keep a record of the 
results of the experiments 
and action items

• Systems change over 
time! Regularly re-run the 
experiments to ensure 
that the system stays 
robust

https://tech.target.com/blog/chaos-engineering-at-target-part-2

https://tech.target.com/blog/chaos-engineering-at-target-part-2
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Exercise: Chaos Experiment for Scheduler

• Design a chaos experiment for 
the scheduling system

• What type of failure to inject & 
how?

• What desired quality attribute 
to preserve under failure?

• What is the hypothesis to test 
with this experiment?

 

 

 

Task 2: API Design for Interoperability  

 

This part of the milestone will involve collaboration across multiple teams. 

 

Starting this milestone, each team will be assigned the responsibility of designing (and 

eventually implementing) a service that will be deployed and shared by all teams. Each service 

will provide functionality to support a particular set of stakeholders and tasks. There will be three 

shared services (one for each team), as illustrated in the diagram above: 

● Testing Service: Provides the service for scheduling apps to request test results. Each 

scheduling app sends information about patients and their testing appointments, which 

are first stored into the Central Database. Once a health administrator enters the test 

results, the Testing Service updates the corresponding entries with the test results. 

● Central Database Service: Provides storage and retrieval of information about patients 

across multiple scheduling apps (including their up-to-date testing history). Other apps 

and services will be able to access information about patients through an API that is 

provided by this service. 

● Data Aggregation Service: Allows the members of the public to view various statistics 

related to an on-going pandemic, such as the number of known positive cases and the 

overall trend over a user-specified period of time. To compute the statistics, this service 

relies on the information provided by the Central Database Service. 

 

 



107

Chaos Engineering in Practice

• Routinely practiced at Google, AWS, Azure, Netflix, Twitter, etc., 

• Many tools, frameworks, books, etc., 
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Summary: Robustness

• Recall: No system will ever be “perfect”

• Assume: Every component will experience a failure at some point; 
hardware will fail; users/clients will send invalid/malicious commands

• Even when these abnormal events occur, our systems should be 
designed to behave in an acceptable manner 

• Methods for identifying possible failures: FTA, HAZOP

• Patterns for designing systems to be robust: Guardrails, redundancy, 
graceful degradation, human-in-the-loop, etc., 

• Approaches for evaluating system robustness: Fault injections, chaos 
engineering
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