
17-423/723:
Designing Large-scale
Software Systems

Design for Robustness
Mar 24 & 26, 2025

2

Logistics

• M4 released

• Two deadlines

• April 2: Implement a prototype of your service

• April 9: Integrate the services into an end-to-end system

3

Leaning Goals

• Understand different ways in which a system may fail to meet its
requirements and quality attributes

• Specify robustness as a quality attribute of a system

• Describe the differences between robustness, fault-tolerance,
resilience, and reliability

• Apply fault tree analysis to identify possible root cause of a system
failure

• Apply HAZOP to identify possible component failures and their
impact on the system

• Apply design patterns for improve the robustness of a system

4

What can possibly go wrong with my system?

5

• Shared phenomena: Interface between the world & software

• Software can influence the world only through the shared interface

• Beyond this interface, we can only assume how the entities in the
world will behave

Recall: World vs. Machine

6

Recall: Satisfaction Argument

“If my software is implemented

correctly (SPEC) and the world

behaves as assumed (ASM),

then the system should fulfill its

requirement (REQ)”

• Requirement (REQ): What the system must achieve, in terms of desired
effects on the world

• Specification (SPEC): What software must implement, expressed over the
shared interface

• Domain assumptions (ASM): What’s assumed about the world; bridge the
gap between REQ and SPEC

7

• Q. What are some ways in which the system may fail to satisfy
this argument?

What can go wrong in my system?

“If my software is implemented

correctly (SPEC) and the world

behaves as assumed (ASM),

then the system should fulfill its

requirement (REQ)”

8

• Missing or incorrect specifications (SPEC)

• Violated specifications, due to bugs or faults in software (SPEC)

• Missing or incorrect assumptions (ASM)

• Missing or incorrect requirements (REQ)

What can go wrong in my system?

9

Example: Lane Keeping Assist

• Requirement (REQ): The vehicle must be prevented from veering off the lane.

• Assumptions (ENV): Sensors are providing accurate information about the lane;
driver responses on time when given a warning; steering wheel is functional

• Specifications (SPEC): Lane detection accurately identifies the lane markings;
controller generates correct steering commands to keep the vehicle within lane

Q. What can go wrong?

10

Recall: Lufthansa 2904 Runway Crash (1993)
• Reverse thrust (RT): Decelerates plane

during landing

• What was required (REQ):
RT is enabled if and only if plane is on the
ground

• What was implemented (SPEC):
RT is enabled if and only if wheel turning

• What was assumed (ENV):
Wheel is turning if and only if it’s on ground

• But runway was wet due to rain
• Wheel failed to turn even when on ground

• Assumption (ENV) was incorrect!

• Pilot attempted to enable RT, but it was
overridden by the software

• Plane went off the runway and crashed

11

“…the websites of UPS, USAA, Home Depot, HBO
Max and Costco were also among those affected.
The websites of British Airways, GoDaddy, Fidelity,
Vanguard and AT&T were among those loading
slowly.

The cause of the outage, the latest major Internet
outage this summer, was linked to Akamai
Technologies, the global content delivery network
based in Cambridge, Mass.”

12

• A typo by a network engineer shuts down many S3 servers (2017)

• Major websites (Slack, Venmo, Trello…) down for 4 hours; $150M loss

• After the incident: Added safeguards to prevent similar failures & ensure fast
recovery

13

Another Example: Panama City Hospital (2000)

• Therapy planning software by Multidata Systems

• Theratron-780 by Theratronics (maker of Therac-25)

• Shielding blocks: Inserted into beam path to protect healthy tissue

• Therapist draws block shapes; software computes amount of radiation dose

14

Example: Panama City Hospital

15

Example: Panama City Hospital

21 patients injured; 8 deaths

16

Blame the user or software?

• Lawsuits against the software company and hospital staff

• Multidata Systems:
“Given [the input] that was given, our system calculated the
correct amount, the correct dose. And, if [the staff in
Panama] had checked, they would have found an
unexpected result.”

• Three therapists charged & found guilty for involuntary
manslaughter; barred from practice for several years

17

Being robust against possible failures

• No system will ever be “perfect”
• The environment will sometimes behave in unexpected ways, violating

assumptions (ASM)

• Software will have bugs and fail from time to time, violating its
specification (SPEC)

• Even when these abnormal events occur, we want our systems to
behave in an acceptable manner

• Even if a user makes a mistake, this should not lead to a safety disaster

• An off-by-one error should not lead to an entire rocket crashing

• Even if some of the servers shut down, the system should continue to
provide critical services

• Q. How to design systems to be robust against abnormal events?

18

Robustness

19

Robustness

• The ability of a system to provide an acceptable level of service even
when it operates under abnormal conditions

• Acceptable service: Functionality or quality attribute (of high
importance) to be preserved, such as:

• Safety: “No unsafe level of radiation delivered to the patient”

• Performance: “The 95th-tile response to client requests is at most 200ms”

• Availability: “The patient record database is available 99% of the times”

• Abnormal conditions: An event or a condition that is outside of an
expected, normal behavior, such as:

• “The nurse deviates from the treatment instructions”

• “The sensor provides an image with a significant amount of blur”

• “The database is unresponsive and fails to store new appointments”

20

Related Concepts

• Fault-tolerance: Ability of a system to provide acceptable service even
when one or more of its components exhibit a faulty behavior

• Typically about internal faults within a system

• In this class, robustness covers both internal & external faults

• Resilience: Ability of a system to recover from an unexpected failure

• Focus is on recovery instead of prevention

• Reliability: Ability of a system to provide acceptable level of service
over a period of time

• Typically measured as a “mean time between failures” (MTBF); e.g., 1
system failure over 1000 hours

• Robustness is necessary to achieve reliability

21

Specifying Robustness: Good & Bad Examples

• The radiation therapy system should never deliver more than a safe
amount of radiation even under data entry errors

• The autonomous vehicle must operate even under a severe weather

• The scheduling app must process appointments even if the connection
to the central database is lost

• Amazon must provide provide a response time less than 100ms even
when the number of customers spikes above an expected threshold

• The package delivery drone should never drop a package at a wrong
location

• The autonomous vehicle must avoid hitting a pedestrian even if an
object detection model fails to recognize it

22

Failure Analysis

23

Failure Analysis

• What can possibly go wrong in my system, and what is potential impact
on system requirements?

• Systematically analyze a design and identify different scenarios in
which the system may fail to satisfy its requirements

• A number methods, developed and routinely applied in many
engineering disciplines

• Fault tree analysis (FTA)

• Hazard and operability study (HAZOP)

• Failure mode & effects analysis (FMEA)

• Why-because analysis

• ...

24

Fault-Tree Analysis (FTA)

• Fault tree: Specify relationships between
a system failure (i.e., requirement violation)
and its potential causes

• Identify sequences of events that result in a
failure

• Prioritize the contributors leading to the
failure

• Inform decisions about how to (re-)design
the system

• Investigate an accident & identify the root
cause

• Often used for safety & reliability, but can
also be used for other types of QAs (e.g.,
poor performance, security attacks…)

25

Elements of Fault Trees

• Event: A fault or an undesirable event

• Non-basic event: An event that can be explained in terms of other events

• Basic event: No further development or breakdown; leaf node in the tree

• Gate: Logical relationship between an event & its immediate subevents

• AND: All of the sub-events must take place

• OR: Any one of the sub-events may result in the parent event

26

Elements of Fault Trees

• Every tree begins with a TOP event
(typically a requirement violation or
a hazardous event)

• Every non-basic event is broken
into a set of child events and
connected through an AND or OR
gate

• Every branch of the tree must
terminate with a basic event

27

What can we do with FTA?

• Qualitative analysis: Determine
potential root causes of a failure
through minimal cut set analysis

• Quantitative analysis: Compute
the probability of a failure based on
the probabilities of the basic events

28

Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained
by removing a basic event.

Minimal cut sets = {

 ??

}

29

Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained
by removing a basic event.

Minimal cut sets = {

 {Lamp 1 burned, Lamp 2 burned},

 {Switch failed},

 {No V in network},

 {Fuse burned}

}

30

Failure Probability Analysis

• To compute the probability of the
top event:

• Assign probabilities to basic
events (based on data analysis
or domain knowledge)

• Apply probability theory to
compute probabilities of
intermediate events through
AND & OR gates

• Alternatively, compute the top
event probability as a sum of
prob. of minimal cut sets

• Q. This is difficult to do with
software – why?

31

Example: Autonomous Train

32

Example: Autonomous Train

• Requirements: The train shall not depart all doors are closed. The
train shall not trap people between the doors.

• Train uses a vision-based system to identify people in the door

• Use a fault tree to identify possible ways in which the person may be
trapped in a door.

33

FTA Example: Autonomous Train

Q. What are some of

the minimum cut sets

in this tree?

34

FTA Example: Autonomous Train

Note: Basic events

correspond to a violation

of a specification (SPEC)

or an assumption (ASM)!

35

FTA Exercise: Lane Keeping Assist

• Requirement: The vehicle must be prevented from going off the lane.

• TOP event: “Vehicle fails to stay within the lane”

• Apply FTA to identify possible causes of this failure

36

FTA Exercise: Lane Keeping System

37

FTA: Benefits & Caveats

• In general, building a “complete” tree is impossible
• There are probably some faulty events that you missed (i.e.,

”unknown unknowns”)

• Domain knowledge is crucial for improving coverage

• Talk to domain experts to identify important and common basic
events for your application domain

• FTA is still very valuable for designing robust systems!

• Forces you to think about & explicitly document possible failure
scenarios

• The outcome is a good starting basis for designing mitigations
(more on this in the next lecture)

38

Hazard and Operability Study (HAZOP)

• Goal: Identify component faults and hazards (i.e., system failures)
through systematic, pattern-based inspection of component functions

39

HAZOP
• HAZOP is a bottom-up method to

identify potential failures: It starts from
individual components

• FTA is a top-down method: It starts
from a top-level failure and links it to
component-level faults

• HAZOP process:

• For each component, specify the
expected behavior of the
component (SPEC)

• Use a set of guide words to
generate possible deviations from
expected behavior

• Analyze the impact of each
generated deviation: Can it result in
a system-level failure?

40

HAZOP Example: Emergency Braking (EB)

• Component: Software controller for EB
• Expected behavior (SPEC): If the ego vehicle is too close to the leading

vehicle, generate a maximum amount of braking to prevent collision

41

HAZOP Example: Emergency Braking (EB)

• Expected: EB must apply a maximum braking command to the engine.

• NO OR NOT: EB does not generate any braking command.

• LESS: EB applies less than max. braking.

• LATE: EB applies max. braking but after a delay of 2 seconds.

• REVERSE: EB generates an acceleration command instead of braking.

42

Another Example: Payment Service

• Component: Payment
service for a shopping site

• Input: Order details,
customer billing
information

• Expected behavior:
Charge customer &
update order status to
“success”

• (Note: This is a contract
specification for the
component!)

43

Another Example: Payment Service

Guide Word Deviation Possible

Cause(s)

Impact Design Change

NO/NOT Payment not

processed

Missing payment

info from customer

Customer

complaint; possible

sale loss

Input validation on

the frontend UI

MORE Duplicate payment

processed

Accidental double

click by customer

Double charge to

the customer

Implement

idempotency with

unique request IDs

LATE No response from

payment service

3rd party payment

gateway timeout

Customer quits;

possible sale loss

Implement retry

with exponential

backoff; failover to

backup gateway

INSTEAD Wrong payment

amount deducted

Program bug Incorrect billing to

the customer

Validate amount

before processing

PART OF Customer order

status still

“pending”

DB transaction

failure

Customer

complaint; possible

sale loss

Use atomic

transactions,

rollback on failure

44

HAZOP Exercise: Lane Keeping Assist

• Component: ML model for lane detection
• Expected behavior (SPEC): Given a sensor image of the ground, the ML

model detects the presence/absence of lane markings

• Apply HAZOP guidewords to identify different ways in which this
component might deviate from expected behavior

45

HAZOP: Benefits & Limitations

• Encourages systematic reasoning about component faults and
their impact

• Can be used to derive basic events, to be used for FTA

• i.e., component faults are possible causes of a TOP event in FTA

• Guidewords are useful, but not perfect; they won’t cover every
possible component fault

• Like FTA, it requires human judgement & domain knowledge to:

• Determine whether a particular guideword is relevant

• Analyze the impact of a component fault on the overall system

46

Design Patterns for Robustness

47

Design Patterns For Robustness

• Having identified possible failure scenarios, how do we re-design the
system to improve its robustness?

• Many design patterns for robustness! We will cover:

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

48

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

49

Guardrails

• Goal: Protect a system/component from unexpected inputs or faulty outputs

• Input monitor: Check for an unexpected or potentially risky input

• If unwanted input is detected, discard or pre-process it to a safe value

• Goal: Improve robustness against external faults

• Output monitor: Check for a potentially faulty output

• If fault is detected, discard or post-process it to a safe value

• Goal: Improve robustness against internal faults

System/

Component
MonitorMonitor

input
output

(post-processed)
input

(pre-processed)

output

50

Input Monitor: Precondition Checking

• Precondition: A condition
that is expected of an input
for the component to function
correctly

• Identify and clearly document
all preconditions over input
parameters

• Check whether input satisfies
the preconditions; if not,
perform safe error handling

• e.g., throw an error to the
client and/or return a safe
default response

51

Input Monitor: Interlock

• Disable actions from being performed by a client/user under a certain context

• Examples

• Disable the nurse from entering a radiation dose higher than a safe threshold

• Disable an untrusted, third-party app from invoking critical OS functions

• Disable an admin user of scheduling app from reading patient info in the central DB

52

Output Monitor: Doer-Checker Pattern

• Doer: Component carrying out a task

• Checker: Check the output by Doer and override it if it is considered
faulty or unsafe

• Checker should be well-tested and verified for reliability

• Usually, this means Checker is much simpler than Doer!

53

Doer-Checker Pattern: Example

• ML-based controller (Doer): Generate
commands to steer the vehicle

• Complex ML model; highly efficient

• But poor performance over
unexpected scenarios/inputs

• Safety controller (Checker): Check
action from ML controller

• Overrides with a safe default action if
ML action is risky

• Simpler, based on verifiable,
transparent logic; performs
conservative steering control

Runtime-Safety-Guided Policy Repair. Zhou et al. (2020)

54

Doer-Checker Pattern: Example

• (a) Yellow region: Slippery road, ignored by ML -> Causes loss of traction

• (b) Checker: Monitor detects lane departure; overrides ML with a safe
steering command

55

Another Example: LLM Guardrails

56

Another Example: LLM Guardrails

Amazon AWS: Build safe and responsible generative AI applications with guardrails

Both input &

output monitors!

https://aws.amazon.com/blogs/machine-learning/build-safe-and-responsible-generative-ai-applications-with-guardrails/

57

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

58

Redundancy

• Goal: If a component fails, continue to provide the same service to clients

• Use redundant components to detect and/or respond to a fault

• Effective only if redundant components fail independently

• Common types of redundancy
• Hot Standby: Standby watches & takes over when primary fails
• Voting: Select the majority decision from multiple components

Q. Why use one

over the other?

59

SW Redundancy: N-Version Programming

• Create different versions of a program from a shared specification

• Deploy them in parallel and take their majority or merge as final output

• Approach: Achieve independence through diversity in implementations
• Developed by different teams, using different languages, libraries, and algorithms

• Q. How well does this work in practice? What are its potential downsides?

60

N-Version Programming: Limitations

• But in practice, independence of failures is rarely achieved

• Different teams make similar types of mistakes when working with the same
specification!

• Overall, little improvement in reliability for high cost of developing &
maintaining multiple versions

An experimental evaluation of the assumption of independence in multi-version programming. Knight & Leveson (1986)

61

Redundancy Example: Sensor Fusion

• Combine data from a wide range of input sensors

• Provides partial information even when some sensors are faulty

• A critical part of modern autonomous systems (self-driving cars, robotics,
IoT…)

62

Exercise: Autonomous Train

• Requirements: The train shall not depart all doors are closed.
The train shall not trap people between the doors.

• ML-based system to detect people & control door closings

• Consider the failure scenarios identified earlier using FTA

• Design ways to improve its robustness using the patterns

Guardrails:

Precondition checking,

interlock, doer-checker

pattern

Redundancy: Standby,

voting, sensor fusion,

63

Recall: FTA for Autonomous Train

64

Robustness Improvement as Modifications to FTA

• Remove or reduce the likelihood of basic events

• Increase the size of cut sets by requiring additional basic events to occur

65

Adding Mitigations

66

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

67

Recall: Coupling

• Coupling: Component A is coupled to B (or “A depends on B”) if a
change or a fault in B affects the correct functioning of A

• In general, loose coupling is desirable: If A does not depend on B,
then B can be changed without affecting A

• Conversely, tight, unnecessary coupling is usually bad: If A depends
on B, and B changes or fails, then A could also fail!

68

Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours

69

Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours

• Swissair Flight 111, 1998

• In-flight entertainment (IFE) shared
wiring with main systems

• Overheats & causes a widespread fire

• 229 passengers killed

70

Failures due to Bad Coupling: Examples

• USS Yorktown, 1997

• Bad data entered into spreadsheet

• Divide-by-zero crashes entire network

• Ship dead in water for 3 hours

• Swissair Flight 111, 1998

• In-flight entertainment (IFE) shared
wiring with main systems

• Overheats & causes a widespread fire

• 229 passengers killed

• Automotive Systems

• Main components connected through a
common CAN bus; no access control

• Can control brake/engine by playing a
CD with malicious music files

Comprehensive Experimental Analyses of Automotive Attack Surfaces. Checkoway et al. (2011)

77

Separation: Circuit Breaker

• Goal: Prevent cascading failures by
removing a connection from a failed
component

• Circuit breaker: A wrapper between a
client & a component that might fail
(“supplier”)

• If the failure persists, “trip” the circuit
breaker by preventing further
connections

• Assumes that the failure will be
resolved after a timeout period; reset
& try again

78

Separation: Circuit Breaker

• If the failure persists, “trip” the circuit
breaker by preventing further
connections

• Threshold for # retries before tripping

• After a reset timeout, try to reach the
supplier again

• If successful, “close” the breaker and
allow the client to connect again

• Client must implement its own logic for
dealing with situations when the
breaker is open

https://martinfowler.com/bliki/CircuitBreaker.html

79

Netflix Hystrix: Circuit Breaker Library

Netflix: Making the Netflix API More Resilient

https://netflixtechblog.com/making-the-netflix-api-more-resilient-a8ec62159c2d

80

Separation: Bulkhead Pattern

• Prevent a failure in one service from propagating by isolating
resources for different services from each other

81

Separation: Bulkhead Pattern

• Multiple services sharing a common set of server resources (e.g.,
threads, CPU, memory, database)

• When one service is overloaded due to an unexpected demand, it
might prevent other services from being available to clients!

Resource Pool

(threads, CPU, database)

View Order

Service

Create Order

Service

82

Separation: Bulkhead Pattern

• Separate the resource pool into multiple, isolated partitions
• Can be done dynamically depending on the level of service demands

• Benefit: Overload in one service has limited impact on the other services

• Libraries and frameworks available for implementing bulkheads (e.g.,
Resilience4j for Java)

View Order

Service

Create Order

Service

Resource

Pool A

Resource

Pool B

83

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

84

Graceful Degradation (Fail-soft)

• Goal: When one or more component fails, temporarily reduce system
functionality or performance of the system

• instead of shutting down the entire system (fail-safe)

• Approaches: When a component fails,

• Return a pre-determined, degraded response to client

• Disable the service but continue to offer other services

degraded response

85

Graceful Degradation: Examples

• Content streaming: In a network failure or congestion, stream a low-
resolution version of a media file

• Web page rendering: If certain Javascript libraries are missing on the
client’s machine, load a basic, HTML-only version

• Denial-of-service (DoS) attack: If a server becomes overwhelmed due
to an attack, re-route the traffic to other available servers using a load
balancer (slower performance)

• Buffering in a chat/e-mail client: If a network connection is lost, buffer
the messages and send them once it becomes available again
(delayed delivery)

• Q. Other examples?

86

Graceful Degradation: Another Example

• Self-driving vehicle with multiple sensors (Lidar & camera)

• When a sensor fails, degrade performance but preserve safety by increasing
distance to the leading object

• There is a limit on how far system can be degraded! When enough faults occur, fail
safely by shutting down

87

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

88

Human in the Loop

• Goal: Prevent or recovery from system/component failures through human
intervention

• An operator monitors the output of a component (“controller”) and intervene
if the output action is potentially faulty

actuatesense

ActuatorSensor

World

89

Human in the Loop: Examples

• Remote operator for self-driving vehicles
• Overtake in scenarios where the system (e.g., ML-based controller) is

unable to make confident decisions

90

Human in the Loop: Examples

• Event monitoring & alerting

• Monitor for certain events (e.g., workload spikes) and send alerts to an engineer
for intervention

• Several modern frameworks available (e.g., Prometheus, Grafana, Thanos)

91

Human in the Loop: Challenges

• Q. Challenges/limitations?

92

Human in the Loop: Challenges

• Notification fatigue, complacency
• After frequent alarms, human may ignore/take them less seriously

• Deciding when to allow or disallow intervention by human
• Consider (slow) human reaction time: Does it make sense to rely on

the human for a resolution?

• Recall: Humans also make mistakes! Can we rely on them to carry
out the task correctly?

• Mental model mismatch

• Does the human have an accurate understanding of the system state
when intervening?

• (More on this in “Design for usability” lecture)

93

Design Patterns For Robustness

• Guardrails

• Redundancy

• Separation

• Graceful degradation

• Human in the loop

• Undoable actions

94

Undoable Actions

• Goal: Provide a way for the system to reverse the effect of an
erroneous action

• Design the system to make certain (critical) actions undoable

• If the system reaches an undesirable state, revert back to the
previous desirable state

95

Undoable Actions: Examples

• Version control systems: Undo changes to codebase & revert back
to a previous snapshot of a repository

• Database transactions: Rollback to a previous database state if a
transaction fails; ensures integrity of the data

• Graphics/text editors: Undo previous editing actions (e.g., ”delete”)

• E-mail client: “Undo” send feature in Gmail (what is its limitation?)

• Factory resets: Mobile devices or computers, to remove effect of
malware or data corruption

• Q. Examples of systems where undoing an action is
difficult/impossible?

96

Undoable Actions

• Goal: Provide a way for the system to reverse the effect of an
erroneous action

• Design the system to make certain (critical) actions undoable

• If the system reaches an undesirable state, revert back to the
previous desirable state

• Challenges

• Not every action can be undone; some effects are irreversible

• Undoing action adds complexity: Must keep track of a history of past
actions and system states

• Delayed undo: It may be too late before determining when an action
should be reversed

97

Summary: Design Patterns for Robustness

• We talked about different patterns/strategies for improving robustness

• There’s no silver bullet! Different strategies are suitable for different
contexts and applications

• Each pattern will also increase the overall system complexity and add to
the development cost

• In practice, it is impossible to predict and prevent every possible failure

• Failure analysis methods like FTA and HAZOP help, but also require
domain knowledge

• But systematically thinking about possible failures & mitigations during
the design is a critical step!

• If you don’t design for robustness, your system is unlikely to be robust by
“accident”

98

Evaluating Robustness

• Having designed a system for robustness, how do we test that a
system is robust against actual failures?

• Fault injection

• Deliberately introduce a failure(s) into a component and observe
how the rest of the system responds

• Chaos engineering

• A type of fault injection approach for evaluating system robustness
in a production-like environment

99

Chaos Engineering

• Goal: Evaluate the robustness of
a system under realistic failures

• Typically involves injecting faults
into a system under production
or production-like environment

• Benefit: Test failures that are
difficult to replicate or simulate
under test environment

• Risks: Can potentially impact
clients/customers; must be done
carefully to minimize negative
impact

100

Chaos Engineering

• Chaos experiments
• Create a hypothesis about system

behavior under a failure

• Designate parts of the system as
control vs. experimental groups

• Inject a failure into the experimental
group

• Measure and compare a desired
metric (e.g., response time, output
quality, etc.,) across groups

• Improve the design to deal with the
failure (e.g., add redundancy); repeat

101

Designing a Chaos Experiment

• Step 1: Develop a hypothesis for the experiment
• Hypothesis: The system can maintain a desired quality attribute when it

encounters a certain type of failure (i.e., a robustness requirement!)

• Type of failure to inject – examples:

• Send malicious commands/requests to a service

• Shutdown a selected set of servers/services

• Introduce a delay in server response

• Remove connections between services

• Disable database operations (write, read)

• Quality attribute to maintain – examples:

• Availability: The scheduling API continues to respond to client requests

• Performance: Response time < 100 ms

102

Designing a Chaos Experiment

• Step 1: Develop a hypothesis for the experiment
• Hypothesis: The system can maintain a desired quality attribute when

it encounters a certain type of failure

• Hypothesis examples:

• “The movie streaming service will continue to provide video streaming
even if the recommendation database is unavailable”

• “The autonomous vehicle maintains a safe distance other vehicles even
when its LiDAR becomes faulty”

• “The shopping site must provide provide a response time less than
100ms when no more than 10% of its servers are unreachable”

103

Designing a Chaos Experiment

• Step 2: Designate control vs. experimental group
• Experimental group: Part of the system exposed to the failure

• Control group: Parts that are shieled from the failure; act as a
baseline for normal system behavior

• Goal: Minimize the disruption on customer-facing services

• Select a small subset of replica servers as the experimental group, or

• Create a replica of an entire production system (more costly!)

• Ensure that a failure does not propagate to the control group/rest of
the system

104

Designing a Chaos Experiment

• Step 3: Inject the failure into the experimental group & compare the
metrics across the two groups

• Game day: An event specifically scheduled to perform chaos
experiments

• Similar to “fire drills”

• Scheduled regularly (e.g., monthly), to help the organization/team
members build “muscle memories” to deal with potential failures

• Typically, developers are not told which type of failure will be injected

• Encourages them to deliberately design the system to be ready for
failures!

105

Designing a Chaos Experiment

• Step 4: Redesign the
system based on the
experimental result; re-
run the experiment to
check improvement

• Keep a record of the
results of the experiments
and action items

• Systems change over
time! Regularly re-run the
experiments to ensure
that the system stays
robust

https://tech.target.com/blog/chaos-engineering-at-target-part-2

https://tech.target.com/blog/chaos-engineering-at-target-part-2

106

Exercise: Chaos Experiment for Scheduler

• Design a chaos experiment for
the scheduling system

• What type of failure to inject &
how?

• What desired quality attribute
to preserve under failure?

• What is the hypothesis to test
with this experiment?

Task 2: API Design for Interoperability

This part of the milestone will involve collaboration across multiple teams.

Starting this milestone, each team will be assigned the responsibility of designing (and

eventually implementing) a service that will be deployed and shared by all teams. Each service

will provide functionality to support a particular set of stakeholders and tasks. There will be three

shared services (one for each team), as illustrated in the diagram above:

● Testing Service: Provides the service for scheduling apps to request test results. Each

scheduling app sends information about patients and their testing appointments, which

are first stored into the Central Database. Once a health administrator enters the test

results, the Testing Service updates the corresponding entries with the test results.

● Central Database Service: Provides storage and retrieval of information about patients

across multiple scheduling apps (including their up-to-date testing history). Other apps

and services will be able to access information about patients through an API that is

provided by this service.

● Data Aggregation Service: Allows the members of the public to view various statistics

related to an on-going pandemic, such as the number of known positive cases and the

overall trend over a user-specified period of time. To compute the statistics, this service

relies on the information provided by the Central Database Service.

107

Chaos Engineering in Practice

• Routinely practiced at Google, AWS, Azure, Netflix, Twitter, etc.,

• Many tools, frameworks, books, etc.,

108

Summary: Robustness

• Recall: No system will ever be “perfect”

• Assume: Every component will experience a failure at some point;
hardware will fail; users/clients will send invalid/malicious commands

• Even when these abnormal events occur, our systems should be
designed to behave in an acceptable manner

• Methods for identifying possible failures: FTA, HAZOP

• Patterns for designing systems to be robust: Guardrails, redundancy,
graceful degradation, human-in-the-loop, etc.,

• Approaches for evaluating system robustness: Fault injections, chaos
engineering

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Leaning Goals
	Slide 4
	Slide 5: Recall: World vs. Machine
	Slide 6: Recall: Satisfaction Argument
	Slide 7: What can go wrong in my system?
	Slide 8: What can go wrong in my system?
	Slide 9: Example: Lane Keeping Assist
	Slide 10: Recall: Lufthansa 2904 Runway Crash (1993)
	Slide 11
	Slide 12
	Slide 13: Another Example: Panama City Hospital (2000)
	Slide 14: Example: Panama City Hospital
	Slide 15: Example: Panama City Hospital
	Slide 16: Blame the user or software?
	Slide 17: Being robust against possible failures
	Slide 18
	Slide 19: Robustness
	Slide 20: Related Concepts
	Slide 21: Specifying Robustness: Good & Bad Examples
	Slide 22
	Slide 23: Failure Analysis
	Slide 24: Fault-Tree Analysis (FTA)
	Slide 25: Elements of Fault Trees
	Slide 26: Elements of Fault Trees
	Slide 27: What can we do with FTA?
	Slide 28: Minimum Cut Analysis
	Slide 29: Minimum Cut Analysis
	Slide 30: Failure Probability Analysis
	Slide 31: Example: Autonomous Train
	Slide 32: Example: Autonomous Train
	Slide 33: FTA Example: Autonomous Train
	Slide 34: FTA Example: Autonomous Train
	Slide 35: FTA Exercise: Lane Keeping Assist
	Slide 36: FTA Exercise: Lane Keeping System
	Slide 37: FTA: Benefits & Caveats
	Slide 38: Hazard and Operability Study (HAZOP)
	Slide 39: HAZOP
	Slide 40: HAZOP Example: Emergency Braking (EB)
	Slide 41: HAZOP Example: Emergency Braking (EB)
	Slide 42: Another Example: Payment Service
	Slide 43: Another Example: Payment Service
	Slide 44: HAZOP Exercise: Lane Keeping Assist
	Slide 45: HAZOP: Benefits & Limitations
	Slide 46
	Slide 47: Design Patterns For Robustness
	Slide 48: Design Patterns For Robustness
	Slide 49: Guardrails
	Slide 50: Input Monitor: Precondition Checking
	Slide 51: Input Monitor: Interlock
	Slide 52: Output Monitor: Doer-Checker Pattern
	Slide 53: Doer-Checker Pattern: Example
	Slide 54: Doer-Checker Pattern: Example
	Slide 55: Another Example: LLM Guardrails
	Slide 56: Another Example: LLM Guardrails
	Slide 57: Design Patterns For Robustness
	Slide 58: Redundancy
	Slide 59: SW Redundancy: N-Version Programming
	Slide 60: N-Version Programming: Limitations
	Slide 61: Redundancy Example: Sensor Fusion
	Slide 62: Exercise: Autonomous Train
	Slide 63: Recall: FTA for Autonomous Train
	Slide 64: Robustness Improvement as Modifications to FTA
	Slide 65: Adding Mitigations
	Slide 66: Design Patterns For Robustness
	Slide 67: Recall: Coupling
	Slide 68: Failures due to Bad Coupling: Examples
	Slide 69: Failures due to Bad Coupling: Examples
	Slide 70: Failures due to Bad Coupling: Examples
	Slide 77: Separation: Circuit Breaker
	Slide 78: Separation: Circuit Breaker
	Slide 79: Netflix Hystrix: Circuit Breaker Library
	Slide 80: Separation: Bulkhead Pattern
	Slide 81: Separation: Bulkhead Pattern
	Slide 82: Separation: Bulkhead Pattern
	Slide 83: Design Patterns For Robustness
	Slide 84: Graceful Degradation (Fail-soft)
	Slide 85: Graceful Degradation: Examples
	Slide 86: Graceful Degradation: Another Example
	Slide 87: Design Patterns For Robustness
	Slide 88: Human in the Loop
	Slide 89: Human in the Loop: Examples
	Slide 90: Human in the Loop: Examples
	Slide 91: Human in the Loop: Challenges
	Slide 92: Human in the Loop: Challenges
	Slide 93: Design Patterns For Robustness
	Slide 94: Undoable Actions
	Slide 95: Undoable Actions: Examples
	Slide 96: Undoable Actions
	Slide 97: Summary: Design Patterns for Robustness
	Slide 98: Evaluating Robustness
	Slide 99: Chaos Engineering
	Slide 100: Chaos Engineering
	Slide 101: Designing a Chaos Experiment
	Slide 102: Designing a Chaos Experiment
	Slide 103: Designing a Chaos Experiment
	Slide 104: Designing a Chaos Experiment
	Slide 105: Designing a Chaos Experiment
	Slide 106: Exercise: Chaos Experiment for Scheduler
	Slide 107: Chaos Engineering in Practice
	Slide 108: Summary: Robustness

