
17-723: Designing
Large-scale
Software Systems
Software Design Process

Tobias Dürschmid

2Designing Large-scale Software Systems - Software Design Process

This Lecture
• How to Design in Agile Projects?
• How to Consider the Human Aspect of Software Design?
• How to Adjust the Design Process To Domain-Specific Needs?

How to
Design in Agile Projects?

4Designing Large-scale Software Systems - Software Design Process

In the Past
Big Upfront Design
was very Common

Requirements

Design

Development

Testing

Deployment

Waterfall Model

Requirements might change during development

Customer feedback is considered very late in the process

Projects were delayed very often

5Designing Large-scale Software Systems - Software Design Process

Alternative to Waterfall: Agile Manifesto

See https://agilemanifesto.org/

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.

2001

What implications does this have on software design?
What role should software design play in agile projects?

https://agilemanifesto.org/

6Designing Large-scale Software Systems - Software Design Process

Design-related Principles
behind the Agile Manifesto

Working software is the primary measure of progress.
[…]
Continuous attention to technical excellence
and good design enhances agility.
[…]
The best architectures, requirements, and designs
emerge from self-organizing teams.

See https://agilemanifesto.org/principles.html

The quality of the design only
matters if it is observable

Design is not an
initial phase but part
of every iteration

There is no single architect
or top-down design

https://agilemanifesto.org/principles.html

7Designing Large-scale Software Systems - Software Design Process

Today No /
Tiny Upfront Design
Is Common

AgileDevelopment

Design

Developm
ent

Testing

Dep
loy

men
t

Requirements Release

Software is hard to change

Improving Quality Attributes
 is hard

Small Bus Factor (i.e., number of people who can leave a project (“hit by a bus”) before
the project stalls. Measures shared knowledge & documentation)

Review

Read more here: Dikert, Kim, Maria Paasivaara, and Casper Lassenius. "Challenges and success factors for large-scale agile transformations: A systematic literature review." Journal of Systems and Software (2016)

https://www.sciencedirect.com/science/article/pii/S0164121216300826

8Designing Large-scale Software Systems - Software Design Process

What should we do instead?

Tiny Upfront
Design

Big Upfront
Design

Risk-Driven
Design

Requirements

Design

Development

Testing

Deployment Desi
gn

Developm
ent

Testing

De
plo
ym
en
t

Requirements Release

Review

9Designing Large-scale Software Systems - Software Design Process

Risk-Driven Design

Read more here: Fairbanks, George. Just enough software architecture: a risk-driven approach. Marshall & Brainerd, 2010.

Identify biggest risks of the software

and focus design on these risks.

The amount of risk involved in the project

determines the amount of upfront design.

10Designing Large-scale Software Systems - Software Design Process

Risks are Decisions that are hard to change

• Programming Languages

• Target Platforms

• Component Architectures & Connectors

• Interfaces

• Quality Attributes

Example Risks

11Designing Large-scale Software Systems - Software Design Process

What Risks are Most Important in These Domains?

Online Shops Games Medical Software

Reliability

Usability Performance

Security Privacy RobustnessPlatforms

Changeability Testability

12Designing Large-scale Software Systems - Software Design Process

Collaborative Risk Identification Technique:
Risk Storming

Read more here: https://riskstorming.com/ by Simon Brown

Model your software design as diagrams
Step 1: Model

Identify the risks silently on post-its
Step 2: Think

Add post-its to the diagram
Step 3: Share

Discuss risks and summarize
Step 4: Review

Colors represent
priorities

https://riskstorming.com/

13Designing Large-scale Software Systems - Software Design Process

Identify and Mitigate Highest-Priority Risks

• Make big design decisions early

• Defer all small-scale decisions until later.

• High cost of change → upfront design

• Low cost of change → lean design

14Designing Large-scale Software Systems - Software Design Process

Responding to change over following a plan
– Agile Manifesto

Changeability in Agile Projects
• A good architecture allows you to make decisions late
• A good architect maximizes the

number of decisions not made
• Information Hiding
• SOLID Principles
• Low Coupling
• High Cohesion
• Separate A software from T software

Design for Change

15Designing Large-scale Software Systems - Software Design Process

Feature Backlog vs Technical Debt Backlog
• User stories capture functional

requirements in the feature backlog

• Maintain a technical debt backlog
with issues that improve software
design by refactoring & building
abstractions

Technical debt is the result of short-term-oriented decisions
that make future changes more costly or impractical.

Read more here: https://agilewaters.com/technical-debt-and-product-backlog/

https://agilewaters.com/technical-debt-and-product-backlog/

16Designing Large-scale Software Systems - Software Design Process

Examples of Technical Dept Issues

• Fix code smells (e.g., duplicate code, high coupling, low

cohesion, complex interfaces, …)

• Improve documentation

• Architectural changes to support performance, scalability, …

17Designing Large-scale Software Systems - Software Design Process

Integrating Technical Dept Issues in Agile
Processes
• Having a special role of an architect who maintains the

technical debt backlog can be good option

• Either include some technical dept issues in every sprint, or

dedicating one sprint to only reducing technical debt

How to
Consider the Human Aspect
of Software Design?

19Designing Large-scale Software Systems - Software Design Process

Don’t Design In an
Isolated Ivory Tower I’m worried how

the decisions
made up there will

affect my work

Read more here: https://techcommunity.microsoft.com/t5/azure-architecture-blog/armchair-architects-architects-vs-the-ivory-tower/ba-p/3711703

Ivory Tower Architects are:
• Not involved in the activities

of software construction
• Ignoring input from other team members

Ivory Tower Designs are:
• Elegant, beautiful, well-documented
• Only work in theory

I work in isolation and
pass down my wisdom to

the developers who will
implement my design

https://techcommunity.microsoft.com/t5/azure-architecture-blog/armchair-architects-architects-vs-the-ivory-tower/ba-p/3711703

20Designing Large-scale Software Systems - Software Design Process

Lesson Learned: Design
is a Collaborative,
Hands-on Activity

Encourage other group members to present design alternatives

Consult domain experts to take advantage of their experience

Include developers in important discussions to ensure realism of design

Stay in touch with the current state of the codebase
Read more here: Smrithi Rekha V, Muccini, Henry. "Group decision-making in software architecture: A study on industrial practices." Information and software technology 101 (2018): 51-63.

Diverse teams make
better decisions

https://www.sciencedirect.com/science/article/pii/S0950584918300740

21Designing Large-scale Software Systems - Software Design Process

Rational Vs. Intuitive Decision Making

Intuitive Decision Making
(unconscious decisions
relying on “gut feeling”)

Rational Decision Making
(explicitly identifying, evaluating,
and ranking design options via logical
reasoning)

Documentation of rationale helps revisiting decisions

Helps gain explicit knowledge and experience

Guides non-experts to better design [1]

Can access all implicit

knowledge and experience

Helps experts with many years

of experience to make better decisions

Can lead to faster decision making

Hard to communicate / justify it

Challenging for group decision making

Prone to cognitive biases

(e.g., anchoring, confirmation bias, …)

Can access only explicit knowledge

[1] Tang, Antony, et al. "Design reasoning improves software design quality."
International Conference on the Quality of Software Architectures. Springer. 2008.

http://www.few.vu.nl/~hans/publications/y2008/QoSA08-DesignReasoning.pdf

22Designing Large-scale Software Systems - Software Design Process

Lesson Learned: Combine Both Processes

Intuitive Decision Making
(unconscious decisions
relying on “gut feeling”)
aka. Naturalistic Decision Making

Rational Decision Making
(explicitly identifying, evaluating,
and ranking design options via logical
reasoning)

Read more here: Power, Ken, and Rebecca Wirfs-Brock. "An exploratory study of naturalistic decision making in complex software architecture environments." European Conference on Software Architecture 2019.
and Tang, Antony, et al. "Human aspects in software architecture decision making." 2017 IEEE International Conference on Software Architecture (ICSA).
and Pretorius, Carianne, et al. "Combined intuition and rationality increases software feature novelty for female software designers." IEEE Software 38.2 (2020): 64-69.

Appropriate Context:
• Time pressure
• Experienced decision makers
• Lack of information
• Hard-to-define problem
• Uncertainty
• “Good-enough” is sufficient

Appropriate Context:
• Justification is Needed
• Well-structured problem
• Optimal decision is needed

https://www.wirfs-brock.com/PDFs/ECSA2019.Power%20and%20Wirfs-Brock.An%20Exploratory%20Study%20of%20Naturalistic%20Decision%20Making%20in%20Complex%20Software%20Architecture%20Environments.Preprint.pdf
https://www.researchgate.net/profile/Antony-Tang/publication/316266811_Human_Aspects_in_Software_Architecture_Decision_Making_-_A_Literature_Review/links/5b8c728392851c1e1243ea0d/Human-Aspects-in-Software-Architecture-Decision-Making-A-Literature-Review.pdf
https://arxiv.org/pdf/2012.05563

23Designing Large-scale Software Systems - Software Design Process

Bounded Rationality
• The rationality of our design decisions is

limited by our cognitive capabilities
• Realistically, we cannot consider all possible design options

to achieve an optimal design

• Designers often retroactively rationalize decisions

Read more here: Tang, Antony, et al. "Human aspects in software architecture decision making." 2017 IEEE International Conference on Software Architecture (ICSA).
and Tang, Antony, and Hans van Vliet. "Software designers satisfice." Software Architecture: 9th European Conference, ECSA 2015,

How do these insights impact our approach to software design?

https://www.researchgate.net/profile/Antony-Tang/publication/316266811_Human_Aspects_in_Software_Architecture_Decision_Making_-_A_Literature_Review/links/5b8c728392851c1e1243ea0d/Human-Aspects-in-Software-Architecture-Decision-Making-A-Literature-Review.pdf
https://www.researchgate.net/profile/Antony-Tang/publication/280027901_Software_Designers_Satisfice/links/55ee184f08aef559dc43954b/Software-Designers-Satisfice.pdf

How to
Adjust the Design Process
To Domain-Specific Needs?

25Designing Large-scale Software Systems - Software Design Process

How does the Design Process Differ for
Doghouses and Skyscrapers?

Many People
involved

Higher Risk
of Failure

Lower Risk
of Failure

Higher Percentage of
Intuitive Decision Making

Higher Percentage of
Rational Decision Making

Fewer People
involved

Short Process
of Construction

Long Process
of Construction

Less
Upfront
Design

& Models

More
Upfront
Design

& Models

Read more here: Software Architecture in Practice 3rd Edition Chapter 15

How do these insights apply to software engineering?

https://learning.oreilly.com/library/view/software-architecture-in/9780132942799/ch15.html

26Designing Large-scale Software Systems - Software Design Process

• More Upfront Design

• Detailed Design Documents

• Rigorous Design Evaluation

Lesson Learned: Adjust the Design
Process to the Specific Domain

• Some Upfront Design

• Focusing on Highest Risks

• Designing while Coding

Higher Risk Domains Lower Risk Domains

27Designing Large-scale Software Systems - Software Design Process

Web-based Social Media Apps

Small to Medium. Mostly limited to
technology choices, client-server interfaces,
component structures, and data models

Usability: Easily change UI
Changeability: Easily add new features
Scalability: Support growth of userbase

Agile Process: Iterative development. “Perpetual development” (i.e., no predefined final
objective). Frequent releases. Testing and peer review instead of design review. Responding
to usage metrics, public opinion, and competitors.
In practice, a large portion of decisions are made intuitively, due to rapid development cycle.
We recommend to deliberately think of hard-to-change design decisions!

“Go fast and break things” – Mark Zuckerberg
(CEO of Facebook / Meta)

For more details see: Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck. "Development and Deployment at Facebook." IEEE Internet Computing 17.4 (2013): 8-17.

Amount of Upfront DesignRisks

Process Changes

http://www.frachtenberg.org/eitan/pubs/papers/feitelson13:devops.pdf

28Designing Large-scale Software Systems - Software Design Process

Case Study: Design Decision Making
at

Decisions are made by self-organized, autonomous teams based on rational
persuasion and data. Tech Lead approves the design.

Decision Makers

Creating design docs before implementing major decisions. Discussion &
review mostly via comments. Some teams have weekly design review meetings.

Design Process

Read more here: https://www.industrialempathy.com/posts/design-docs-at-google/ and https://open.lib.umn.edu/organizationalbehavior/chapter/11-1-decision-making-culture-the-case-of-google

Informal Design Docs (goals, non-goals, context diagrams, interface
descriptions, data models, alternative options, and justification for chosen design).

Design Artifacts
Just like your

project reports!

https://www.industrialempathy.com/posts/design-docs-at-google/
https://open.lib.umn.edu/organizationalbehavior/chapter/11-1-decision-making-culture-the-case-of-google

29Designing Large-scale Software Systems - Software Design Process

“Waterfall-like” Process: Limited benefits of full-cycle iterations, due to single launch date.
Avoiding intuitive decision making to extensively document & review design decisions.
Formal validation & verification of important components due to high cost of failure.
External reuse is very un-common, due to extreme reliability requirements. NASA even re-built
their own Linux kernel. Internal reuse is very common.

Spacecraft Software

A lot! Many models & formal design
reviews. Mission-critical elements are
analyzed very rigorously.

Robustness: Operate reliably in uncertain
environments without human interference
Testability: Detecting faults on Earth is hard

“Failure is not an option” – Gene Kranz
(NASA Flight Director of Apollo 13)

For more details see: Markosian, Lawrence Z., et al. "Program model checking using Design-for-Verification: NASA flight software case study." 2007 IEEE Aerospace Conference. IEEE, 2007.

Amount of Upfront DesignRisks

Process Changes

https://www.researchgate.net/profile/Masoud-Mansouri-Samani/publication/224699088_Program_Model_Checking_Using_Design-for-Verification_NASA_Flight_Software_Case_Study/links/0deec52c052a14ef2e000000/Program-Model-Checking-Using-Design-for-Verification-NASA-Flight-Software-Case-Study.pdf

30Designing Large-scale Software Systems - Software Design Process

Case Study: Design Decision Making
at

Project managers develop, record, and maintain software design documents are
reviewed based on detailed checklists.

Decision Makers

Top-Down: System Definition Review -> Preliminary Design Rev. -> Critical Design Rev.
-> System Integration Rev. -> Test Readiness Rev. -> System Acceptance Rev.

Design Process

Read more here: https://swehb.nasa.gov/display/SWEHBVD/SWE-058+-+Detailed+Design

Detailed Design Documents (very long documents outlining every aspect of the
structure, behavior, and quality attributes of the design)

Design Artifacts

https://swehb.nasa.gov/display/SWEHBVD/SWE-058+-+Detailed+Design

31Designing Large-scale Software Systems - Software Design Process

32Designing Large-scale Software Systems - Software Design Process

Lean & Agile Process: Rapid prototyping & taking shortcuts to quickly get to the minimum
viable product (MVP). Relying as much on reuse as possible can speed up development.
After reaching the MVP and/or breaking-even point, paying more attention to clean code and
clean architecture supports future growth, onboarding of new developers, extensibility, and
scalability to build a robust foundation for long-term success. But: Avoid over-engineering

Software Startups

None to Small. Most design happens
implicitly while coding or after the first release.
Decisions are driven by short-term needs.

Amount of Upfront Design
Extensibility: Quickly respond to new
customer needs
Time-to-Market: Quickly start breaking even

Risks

Process Changes

“Fake it until
you make it”

For more details see: Tegegne, Esubalew Workineh, Pertti Seppänen, and Muhammad Ovais Ahmad. "Software development methodologies and practices in start-ups." IET Software 13.6 (2019)

"I’m a long-term kind of person.” – Steve Jobs
(Founder of Apple)

https://scholar.archive.org/work/vz7vgthh4vcztenwacpna4hebi/access/wayback/https:/ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-sen.2018.5270

33Designing Large-scale Software Systems - Software Design Process

Stop Upfront Design When…

For more details see: The lost art of software design by Simon Brown

You understand the significant design decisions

You understand the context and scope of what you are building

You understand the significant architectural drivers

You have a way to communicate your technical vision to others

You are confident that the design satisfies key architectural drivers

You have identified and are comfortable with the project’s risks

https://www.youtube.com/watch?v=36OTe7LNd6M

34Designing Large-scale Software Systems - Software Design Process

Course Policy-Reminder
“The use of generative AI has to be explicitly marked as such,
including your prompts and a screenshot of the result. While we
encourage you to critically engage with generative AI and use it
for idea generation, the submitted solution has to be your own
and differ significantly from responses of generative AI.
Generative AI is not allowed on exams or exit tickets.”

35Designing Large-scale Software Systems - Software Design Process

Please Complete the Exit Ticket in Canvas!

36Designing Large-scale Software Systems - Software Design Process

Summary

Credits: These slide use images from Flaticon.com (Creators: Freepik, itim2101, Imaginationlol, HAJICON, Smashicons, Eucalyp)
SVGRepo (Cretors: Twemoji Emojis), and the Noun Project (look up by Syawaluddin, and Designer by Amethyst (CC BY 3.0))

• Identify biggest risks of your software and focus design on these
• Design for Change to support flexibility of changing requirements
• Delay important decisions to a later point in time and design the

architecture to hide this decision in a single module
• Maintain a Technical Debt Backlog additionally to the Feature

Backlog to maintain issues that improve software design
• Adjust the design process based on the domain’s needs

