
17-423/723: 
Designing Large-scale 
Software Systems
Design for Robustness
Mar 25 & 27, 2024



2

Leaning Goals
• Understand different ways in which a system may fail to meet its 

requirements and quality attributes
• Specify robustness as a quality attribute of a system
• Describe the differences between robustness, fault-tolerance, 

resilience, and reliability
• Apply fault tree analysis to identify possible root cause of a system 

failure
• Apply HAZOP to identify possible component failures and their 

impact on the system 
• Apply design patterns for improve the robustness of a system



3

What can possibly go wrong with my system?



4

• Shared phenomena: Interface between the world & software
• Software can influence the world only through the shared interface
• Beyond this interface, we can only assume how the entities in the 

world will behave

Recall: World vs. Machine



5

Recall: Satisfaction Argument

“If my software is implemented
correctly (SPEC) and the world
behaves as assumed (ASM),
then the system should fulfill its
requirement (REQ)”

• Requirement (REQ): What the system must achieve, in terms of desired 
effects on the world

• Specification (SPEC): What software must implement, expressed over 
the shared interface

• Domain assumptions (ASM): What’s assumed about the world; bridge 
the gap between REQ and SPEC



6

• Q. What are some ways in which the system may fail to satisfy 
this argument?

What can go wrong in my system?

“If my software is implemented
correctly (SPEC) and the world
behaves as assumed (ASM),
then the system should fulfill its
requirement (REQ)”



7

• Missing or incorrect specifications (SPEC)
• Violated specifications, due to bugs or faults in software (SPEC)
• Missing or incorrect assumptions (ASM)
• Missing or incorrect requirements (REQ)

What can go wrong in my system?



8

Example: Lane Keeping Assist

• Requirement (REQ): The vehicle must be prevented from veering off the lane.
• Assumptions (ENV): Sensors are providing accurate information about the lane; 

driver responses on time when given a warning; steering wheel is functional
• Specifications (SPEC): Lane detection accurately identifies the lane markings; 

controller generates correct steering commands to keep the vehicle within lane

Q. What can go wrong?



9

Recall: Lufthansa 2904 Runway Crash (1993)
• Reverse thrust (RT): Decelerates plane 

during landing

• What was required (REQ):
RT is enabled if and only if plane is on the 
ground

• What was implemented (SPEC):
RT is enabled if and only if wheel turning

• What was assumed (ENV):
Wheel is turning if and only if it’s on ground

• But runway was wet due to rain
• Wheel failed to turn even when on ground
• Assumption (ENV) was incorrect!
• Pilot attempted to enable RT, but it was 

overridden by the software
• Plane went off the runway and crashed



10

Example: Panama City Hospital (2000)

• Therapy planning software by Multidata Systems
• Theratron-780 by Theratronics (maker of Therac-25)
• Shielding blocks: Inserted into beam path to protect healthy tissue
• Therapist draws block shapes; software computes amount of radiation dose



11

Example: Panama City Hospital



12

Example: Panama City Hospital

21 patients injured; 8 deaths



13

Blame the user or software?
• Lawsuits against the software company and hospital staff
• Multidata Systems:

“Given [the input] that was given, our system calculated the 
correct amount, the correct dose. And, if [the staff in 
Panama] had checked, they would have found an 
unexpected result.”

• Three therapists charged & found guilty for involuntary 
manslaughter; barred from practice for several years



14

Being robust against possible failures
• No system will ever be “correct”
• The environment will often behave in unexpected ways, violating 

assumptions (ASM)
• Software will have bugs and the underlying hardware will sometimes 

fail; specifications (SPEC) will be violated
• Even when these abnormal events occur, we want our systems to 

behave in an acceptable manner 
• Even if a user makes a mistake, this should not lead to a safety disaster
• An off-by-one error should not lead to an entire rocket crashing
• Even if some of the servers shutdown, the system should continue to 

provide critical services
• How do we design systems to be robust against such failures?



15

Robustness



16

Robustness
• The ability of a system to provide an acceptable level of service even 

when it operates under abnormal conditions
• Acceptable level of service: Quality attribute (typically of high 

importance) to be preserved, such as:
• Safety: “No unsafe level of radiation delivered to the patient”
• Performance: “The 95th-tile response to client requests is at most 200ms”
• Availability: “The patient record database is available 99% of the times”

• Abnormal conditions: An event or a condition that is outside of an 
expected, normal behavior, such as:

• “The nurse deviates from the treatment instructions”
• “The sensor provides an image with a significant amount of blur” 
• “The database is unresponsive and fails to store new appointments”



17

Robustness
• The ability of a system to provide an acceptable level of service even 

when it operates under abnormal conditions
• Acceptable level of service: Quality attribute (typically of high 

importance) to be preserved
• Abnormal conditions: An event or a condition that is outside of an 

expected, normal behavior
• Q. Does this remind of you another quality attribute?



18

Robustness
• The ability of a system to provide an acceptable level of service even 

when it operates under abnormal conditions
• Acceptable level of service: Functional requirement or quality attribute 

(typically of high importance) to be preserved
• Abnormal conditions: An event or a condition that is outside of an 

expected, normal behavior
• Recall: Scalability is the ability to handle growth in the amount of 

workload while maintaining an acceptable level of performance
• Scalability can be thought of as one specific type of robustness!



19

Related Concepts
• Fault-tolerance: Ability of a system to provide acceptable service even 

when one or more of its components exhibit a faulty behavior
• Typically about internal faults within a system
• In this class, robustness covers both internal & external faults

• Resilience: Ability of a system to recover from an unexpected failure
• Focus is on recovery instead of prevention

• Reliability: Ability of a system to provide acceptable level of service 
over a period of time

• Typically measured as a “mean time between failures” (MTBF); e.g., 1 
system failure over 1000 hours

• Robustness is necessary to achieve reliability



20

Specifying Robustness: Good & Bad Examples

• The radiation therapy system should never deliver more than a 
maximum amount of radiation no matter what the nurse inputs 

• The autonomous vehicle must operate even under a severe weather
• The scheduling app must process appointments even if the connection 

to the central database is lost
• Amazon must provide provide a response time less than 100ms even 

when the amount of concurrent customers exceeds 2 million
• The package delivery drone should never drop a package at a wrong 

location
• The autonomous vehicle must avoid hitting a pedestrian even if an 

object detection model fails to recognize it



21

Failure Analysis



22

Failure Analysis
• What can possibly go wrong in my system, and what is potential impact 

on system requirements?
• Systematically analyze a design and identify different scenarios in 

which the system may fail to satisfy its requirements 
• A number methods, developed and routinely applied in many 

engineering disciplines
• Fault tree analysis (FTA)
• Hazard and operability study (HAZOP)
• Failure mode & effects analysis (FMEA)
• Why-because analysis
• ...



23

Fault-Tree Analysis (FTA)
• Fault tree: Specify relationships between 

a system failure (i.e., requirement violation) 
and its potential causes

• Identify sequences of events that result in a 
failure

• Prioritize the contributors leading to the 
failure

• Inform decisions about how to (re-)design 
the system

• Investigate an accident & identify the root 
cause

• Often used for safety & reliability, but can 
also be used for other types of QAs (e.g., 
poor performance, security attacks…)



24

Elements of Fault Trees

• Event: A fault or an undesirable event
• Non-basic event: An event that can be explained in terms of other events
• Basic event: No further development or breakdown; leaf node in the tree

• Gate: Logical relationship between an event & its immediate subevents
• AND: All of the sub-events must take place
• OR: Any one of the sub-events may result in the parent event



25

Elements of Fault Trees
• Every tree begins with a TOP event 

(typically a requirement violation or 
a hazardous event)

• Every non-basic event is broken 
into a set of child events and 
connected through an AND or OR 
gate

• Every branch of the tree must 
terminate with a basic event



26

What can we do with FTA?
• Qualitative analysis: Determine 

potential root causes of a failure 
through minimal cut set analysis

• Quantitative analysis: Compute 
the probability of a failure based on 
the probabilities of the basic events



27

Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient 
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained 
by removing a basic event.

Minimal cut sets = {
??

}



28

Minimum Cut Analysis

• Cut set: A set of basic events whose simultaneous occurrence is sufficient 
to guarantee that the TOP event occurs.

• Minimal cut set: A cut set from which a smaller cut set cannot be obtained 
by removing a basic event.

Minimal cut sets = {
{Lamp 1 burned, Lamp 2 burned},
{Switch failed},
{No V in network},
{Fuse burned}

}



29

Failure Probability Analysis

• To compute the probability of the 

top event:

• Assign probabilities to basic 

events (based on data analysis 

or domain knowledge)

• Apply probability theory to 

compute probabilities of 

intermediate events through 

AND & OR gates

• Alternatively, compute the top 

event probability as a sum of 

prob. of minimal cut sets

• Q. This is difficult to do with 
software – why?



30

Example: Autonomous Train



31

Example: Autonomous Train

• Requirements: The train shall not depart all doors are closed. The 
train shall not trap people between the doors.

• Train uses a vision-based system to identify people in the door
• Use a fault tree to identify possible ways in which the person may be 

trapped in a door.



32

FTA Example: Autonomous Train

Q. What are some of 
the minimum cut sets 
in this tree?



33

FTA Example: Autonomous Train

Note: Basic events 
correspond to a violation 
of a specification (SPEC) 
or an assumption (ASM)!



34

FTA Exercise: Lane Keeping Assist

• Requirement: The vehicle must be prevented from going off the lane.
• Use the failure to satisfy this as the TOP event
• Perform FTA to identify possible causes of this failure



35

FTA Exercise: Lane Keeping System



36

FTA: Caveats

• In general, building a “complete” tree is impossible
• There are probably some faulty events that you missed (i.e., 

”unknown unknowns”)

• Domain knowledge is crucial for improving coverage 
• Talk to domain experts to identify important and common basic 

events for your application domain

• FTA is still very valuable for risk reduction!
• Forces you to think about & explicitly document possible failure 

scenarios
• A good starting basis for designing mitigations (more on this in the 

next lecture)



37

Hazard and Operability Study (HAZOP)

• Goal: Identify hazards and component faults through systematic, 
pattern-based inspection of component functions



38

HAZOP
• HAZOP is a bottom-up method to 

identify potential failures: It starts from 
individual components

• FTA is a top-down method: It starts 
from a top-level failure and links it to 
component-level faults

• HAZOP process:
• For each component, specify the 

expected behavior of the 
component (SPEC)

• Use a set of guide words to 
generate possible deviations from 
expected behavior

• Analyze the impact of each 
generated deviation: Can it result in 
a system-level failure?



39

HAZOP Example: Emergency Braking (EB)

• Component: Software controller for EB

• Expected behavior (SPEC): If the ego vehicle is too close to the leading 

vehicle, generate a maximum amount of braking to prevent collision



40

HAZOP Example: Emergency Braking (EB)

• Expected: EB must apply a maximum braking command to the engine. 
• NO OR NOT: EB does not generate any braking command.
• LESS: EB applies less than max. braking.
• LATE: EB applies max. braking but after a delay of 2 seconds.
• REVERSE: EB generates an acceleration command instead of braking.



41

HAZOP Exercise: Lane Keeping Assist

• Component: ML model for lane detection
• Expected behavior (SPEC): Given a sensor image of the ground, the ML 

model detects the presence/absence of lane markings

• Apply HAZOP guidewords to identify different ways in which this 
component might deviate from expected behavior 



42

HAZOP: Benefits & Limitations

• Encourages systematic reasoning about component faults

• Can be combined with FTA to generate faults (i.e., basic events in FTA)

• Potentially labor-intensive; relies on engineer's judgement

• Does not guarantee to find all failures (but this is true for every method!)



43

Design Patterns for Robustness



44

Design Patterns For Robustness
• Having identified possible failure scenarios, how do we re-design the 

system to improve its robustness?
• Many design patterns for robustness! We will cover:

• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



45

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



46

Guardrails

• Goal: Protect a system/component from unexpected inputs or faulty outputs
• Input monitor: Check for an unexpected or potentially risky input

• If unwanted input is detected, discard or pre-process it to a safe value
• Goal: Improve robustness against external faults

• Output monitor: Check for a potentially faulty output
• If fault is detected, discard or post-process it to a safe value
• Goal: Improve robustness against internal faults

System/
Component MonitorMonitor

input output
(post-processed)input 

(pre-processed)
output



47

Type of Guardrail: Precondition Checking
• Precondition: A condition 

that must be true of an input 
for a component to function 
correctly

• Identify and clearly document 
all preconditions over input 
parameters

• Check whether input satisfies 
the preconditions; if not, 
perform safe error handling

• e.g., throw an error to the 
client and/or return a safe 
default response 



51

Type of Guardrail: Interlock

• Disable actions from being performed by a client/user under a certain context
• Examples

• Disable the nurse from entering a radiation dose higher than a safe threshold
• Disable an untrusted, third-party app from invoking critical OS functions
• Disable an admin user of scheduling app from reading patient info in the central DB



48

Type of Guardrail: Doer-Checker Pattern

• Doer: Component carrying out a task 
• Checker: Check the output by Doer and override it if it is considered 

faulty or unsafe
• Checker should be well-tested and verified for reliability
• Usually, this means Checker is simpler than Doer



49

Doer-Checker Pattern: Example
• ML-based controller (Doer): Generate 

commands to steer the vehicle
• Complex DNN; highly efficient
• But poor performance over 

unexpected scenarios/inputs

• Safety controller (Checker): Check 
action from ML controller

• Overrides with a safe default action if 
ML action is risky

• Simpler, based on verifiable, 
transparent logic; performs 
conservative steering control

Runtime-Safety-Guided Policy Repair. Zhou et al. (2020)



50

Doer-Checker Pattern: Example

• (a) Yellow region: Slippery road, ignored by ML -> Causes loss of traction

• (b) Checker: Monitor detects lane departure; overrides ML with a safe 
steering command



52

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



53

Redundancy

• Goal: If a component fails, continue to provide the same service 
• Use redundant components to detect and/or respond to a fault
• Effective only if redundant components fail independently
• Common types of redundancy

• Hot Standby: Standby watches & takes over when primary fails
• Voting: Select the majority decision from multiple components



54

SW Redundancy: N-Version Programming

• Create different versions of a program from a shared specification
• Deploy them in parallel and take their majority or merge as final output
• Approach: Achieve independence through diversity in implementations

• Developed by different teams, using different languages, libraries, and algorithms
• Q. How well does this work in practice? What are its potential downsides?



55

N-Version Programming: Limitations

• But in practice, independence of failures is rarely achieved
• Different teams make similar types of mistakes when working with the same 

specification!
• Overall, little improvement in reliability for high cost of developing & 

maintaining multiple versions
An experimental evaluation of the assumption of independence in multi-version programming. Knight & Leveson (1986)



56

Redundancy Example: Sensor Fusion

• Combine data from a wide range of sensors
• Provides partial information even when some sensor is faulty
• A critical part of modern autonomous systems
• Q. Why does this approach work?



57

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



58

Recall: Coupling

• Coupling: Component A is coupled to B (or “A depends on B”) if a 
change or a fault in B affects the correct functioning of A

• In general, loose coupling is desirable: If A does not depend on B, 
then B can be changed without affecting A

• Conversely, tight, unnecessary coupling is usually bad: If A depends 
on B, and B changes or fails, then A could also fail!



59

Failures due to Bad Coupling: Examples
• USS Yorktown, 1997

• Bad data entered into spreadsheet
• Divide-by-zero crashes entire network
• Ship dead in water for 3 hours



60

Failures due to Bad Coupling: Examples
• USS Yorktown, 1997

• Bad data entered into spreadsheet
• Divide-by-zero crashes entire network
• Ship dead in water for 3 hours

• Swissair Flight 111, 1998
• In-flight entertainment (IFE) shared 

wiring with main systems
• Overheats & causes a widespread fire
• 229 passengers killed



61

Failures due to Bad Coupling: Examples
• USS Yorktown, 1997

• Bad data entered into spreadsheet
• Divide-by-zero crashes entire network
• Ship dead in water for 3 hours

• Swissair Flight 111, 1998
• In-flight entertainment (IFE) shared 

wiring with main systems
• Overheats & causes a widespread fire
• 229 passengers killed

• Automotive Systems
• Main components connected through a 

common CAN bus; no access control
• Can control brake/engine by playing a 

CD with malicious music files
Comprehensive Experimental Analyses of Automotive Attack Surfaces. Checkoway et al. (2011)



62

Separation
• Principle: A component that performs a high-critical (HC) function 

should not depend on an unreliable component (UC)
• What makes a component unreliable?

• Complex or black-box component: Difficult to test or analyze
• Responsible for multiple functions: More possible faults (recall: single-

responsibility principle)
• Receives inputs from unknown, external sources

• Goal: Remove or reduce dependency between HCs and UCs
• Construct a component diagram and identify the set of components that 

are responsible for achieving a high-critical requirement
• If these include UCs, re-design the system to remove them from the set



63

Separation Example: Radiation Therapy



64

Radiation Therapy: Safety Requirement

“If door is opened during 
treatment, immediately 
stop the radiation by 
inserting the beam block”



65

Component Responsibilities
• Event Handler: Generic pub-

sub framework, handles all 
messages within the system

• Event Logger: Logs every 
message sent & received over 
the pub-sub network

• Treatment Manager: 
Receives sensor input from 
Door Controller and send 
instruction to Beam Manager

• Beam Manager: Send 
command to Beam Controller



66

Reliable Components?
• Event Handler: Little control 

over timing; possible delay 
under heavy traffic

• Event Logger: May throw an 
error if the disk is full 

• Treatment Manager: Also 
handles requests from the UI, 
put into the same queue as 
other requests

• To ensure the requirement, 
we need to rely on these 
components not failing!



67

Separation: Trusted Computing Base (TCB)
• TCB: A set of components 

dedicated to ensuring critical 
requirements 

• Should ideally be small, 
testable, and isolated

• Emergency Unit serves a single 
purpose and is much simpler; 
can be made reliable

• Can't eliminate all risk of failure, 
but significantly reduce it

• However, also makes the 
overall system more complex 
and costly



68

Separation: Circuit Breaker
• Goal: Prevent cascading failures by 

removing a connection from a failed 
component

• Circuit breaker: A wrapper between a 
client & a component that might fail 
(“supplier”)

• If the failure persists, “trip” the circuit 
breaker by preventing further 
connections



69

Separation: Circuit Breaker
• If the failure persists, “trip” the circuit 

breaker by preventing further 
connections

• Threshold for # retries before tripping
• After a reset timeout, try to reach the 

supplier again
• If successful, “close” the breaker and 

allow the client to connect again
• Client must implement its own logic for 

dealing with situations when the 
breaker is open

https://martinfowler.com/bliki/CircuitBreaker.html



70

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



71

Graceful Degradation (Fail-soft)

• Goal: When one or more component fails, temporarily reduce system 
functionality or performance of the system

• instead of shutting down the entire system (fail-safe)
• Approaches: When a component fails,

• Return a pre-determined, degraded response to client
• Disable the service but continue to offer other services

degraded response



72

Graceful Degradation: Examples

• Content streaming: In a network failure or congestion, stream a low-
resolution version of a media file

• Web page rendering: If certain Javascript libraries are missing on the 
client’s machine, load a basic, HTML-only version

• Denial-of-service (DoS) attack: If a server becomes overwhelmed due 
to an attack, re-route the traffic to other available servers using a load 
balancer slower performance)

• Buffering in a chat/e-mail client: If a network connection is lost, buffer 
the messages and send them once it becomes available again 
(delayed delivery)

• Q. Other examples?



73

Graceful Degradation: Another Example

• Self-driving vehicle with multiple sensors (Lidar & camera)
• When a sensor fails, degrade performance but preserve safety by increasing 

distance to the leading object
• There is a limit on how far system can be degraded! When enough faults occur, fail 

safely by shutting down



74

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



75

Human in the Loop

• Goal: Prevent or recovery from system/component failures through human 
intervention

• An operator monitors the output of a component (“controller”) and intervene 
if the output action is potentially faulty

actuatesense

ActuatorSensor

World



76

Human in the Loop: Examples

• Remote operator for self-driving vehicles
• Overtake in scenarios where the system (e.g., ML-based controller) is 

unable to make confident decisions



77

Human in the Loop: Examples

• Event monitoring & alerting
• Monitor for certain events (e.g., workload spikes) and send alerts to an engineer 

for intervention
• Several modern frameworks available (e.g., Prometheus, Grafana, Thanos)



78

Human in the Loop: Challenges
• Notification fatigue, complacency

• After frequent alarms, human may ignore/take them less seriously
• Deciding when to allow or disallow intervention by human

• Consider (slow) human reaction time: Does it make sense to rely on 
the human for a resolution?

• Recall: Humans also make mistakes! Can we rely on them to carry 
out the task correctly?

• Mental model mismatch
• Does the human have an accurate understanding of the system state 

when intervening?
• (More on this in “Design for usability” lecture)



79

Design Patterns For Robustness
• Guardrails
• Redundancy
• Separation
• Graceful degradation
• Human in the loop
• Undoable actions



80

Undoable Actions

• Goal: Provide a way for the system to reverse the effect of an 
erroneous action

• Design the system to make certain (critical) actions undoable 

• If the system reaches an undesirable state or at the request of a 
client/user, revert back to the previous desirable state

• Challenges
• Not every action can be undone; some effects are irreversible 
• Undoing action adds complexity: Must keep track of a history of past 

actions and system states
• Delayed undo: It may be too late before determining when an action 

should be reversed



81

Undoable Actions: Examples
• Version control systems: Undo changes to codebase & revert back 

to a previous snapshot of a repository 
• Database transactions: Rollback to a previous database state if a 

transaction fails; ensures integrity of the data
• Graphics/text editors: Undo previous editing actions (e.g., ”delete”)
• E-mail client: “Undo” send feature in Gmail (what is its limitation?)
• Factory resets: Mobile devices or computers, to remove effect of 

malware or data corruption
• Q. Examples of systems where undoing an action is 

difficult/impossible?



82

Exercise: Autonomous Train

• Requirements: The train shall not depart all doors are closed. 
The train shall not trap people between the doors.

• ML-based system to detect people & control door closings
• Consider the failure scenarios identified earlier using FTA
• Design ways to improve its robustness using the patterns

Patterns for Robustness
Guardrails
Redundancy
Separation
Graceful degradation
Human in the loop
Undoable actions



83

Recall: FTA for Autonomous Train



84

Robustness Improvement as Modifications to FTA

• Remove or reduce the likelihood of basic events
• Increase the size of cut sets by requiring additional basic events to occur 



85

Adding Mitigations



86

Summary: Design Patterns for Robustness
• We talked about different patterns/strategies for improving robustness: 

Guardrails, redundancy, separation, graceful degradation, human in the loop, 
and undoable actions

• There’s no silver bullet! Different strategies are suitable for different contexts 
and applications

• Each pattern will also increase the overall system complexity and add to the 
development cost

• In practice, it is impossible to predict and prevent every possible failure 
• Failure analysis methods like FTA and HAZOP help, but also require domain 

knowledge

• But systematically thinking about possible failures & mitigations during the 
design is a critical step! 

• If you don’t design for robustness, your system is unlikely to be robust by “accident”



87

Summary
• Exit ticket!


