
17-423/723:
Designing Large-scale
Software Systems

Design for Security
March 31 & April 2, 2025

2

Learning Goals

• Describe key elements of security design and analysis

• Describe the major challenges of achieving security in practice

• Apply threat modeling to identify potential threats and mitigations

• Apply design principles to improve the security of a system

3

Why should we care about security?

4

Source: ABC news, Oct 12, 2014

5

Colonial Pipeline Attack, 2021

6

Source: Wired, Feb 8, 2021

7

Source: Wall Street Journal, Sept 30, 2021

8

Security: Why should we (not) care?

• Security is expensive!

• Incurs additional development cost; requires security expertise
in your team or organization

• Annoys the user and interferes with their tasks (e.g., two-factor
authentication)

• Not properly regulated or enforced by law

• Often retroactively added after an incident, to avoid
embarrassment, lawsuits, and fines (sometimes)

9

Security: Why should we care?

• But increasingly wider range of harms are caused by security
attacks

• It’s not just about data leaks anymore

• Can cause safety failures; physical, environmental, mental harms

• Viewpoint: We can't all be security experts, but:

• Should be aware of possible consequences of no/little security

• Understand basic design principles; avoid common pitfalls

• Know how to apply best design practices

• Know when/how to talk to security experts

10

Elements of Security

11

Key Elements of Security

• Security requirements (sometimes called security policies)

• What needs to be protected?

• Threat model

• What are the goals & capabilities of an attacker?

• Attack surface

• Which parts of the system are exposed to an attacker?

• Protection mechanisms

• How do we prevent an attacker from compromising a
security requirement?

12

Security Requirements

• Common security requirements:
"CIA triad" of information security

• Confidentiality: Sensitive data
must be accessed by authorized
users only

• Integrity: Sensitive data must be
modifiable by authorized users
only

• Availability: Critical services must
be available when needed by
clients

13

Example: Graduate Admission System

14

Confidentiality, Integrity, Availability, or None?

• Applications to the MS program can only be viewed by staff and
faculty in the department.

• The site should be able to handle up to 200 concurrent requests
on the application deadline.

• Application decisions are recorded only by the program director.

• The application site should backup all applications in case of a
server failure.

• The acceptance notices can only be sent out by the program
director.

15

Confidentiality, Integrity, Availability, or None?

• Applications to the MS program can only be viewed by staff and
faculty in the department. Confidentiality

• The site should be able to handle up to 200 concurrent requests
on the application deadline. Availability

• Application decisions are recorded only by the program director.
Integrity

• The application site should backup all applications in case of a
server failure. None (not a requirement, but a design decision)

• The acceptance notices can only be sent out by the program
director. Integrity

16

Other Security Requirements

• Authenticity: The identity of a user can be verified to be whom
they claim to be

• Non-repudiation: Certain changes or actions in the system can be
traced to who was responsible for it

• Authorization: Only users with the right permissions can access a
resource or perform an action

17

Key Elements of Security

• Security requirements (sometimes called security policies)

• What needs to be protected?

• Threat model

• What are the goals & capabilities of an attacker?

• Attack surface

• Which parts of the system are exposed to an attacker?

• Protection mechanisms

• How do we prevent an attacker from compromising a
security requirement?

19

What makes security hard?

20

Wrong Threat Model

21

Wrong Threat Model

Maginot Line (1930s)

Built by France to deter

invasion; state-of-the-art

engineering

Germans reformulated

plans after WWI; invade

across Belgium

22

Unidentified Attack Surface

Château Gaillard (1200s,

Normandy, literally “Strong

Castle”)

Impervious; under siege for 6

months by Phillip II (France)

Eventually conquered by

climbing through toilet chute

23

Insufficient Protection Mechanism

Trojan Horse (Greeks vs

Troy; 12th BC?)

Disguised as a harmless

trophy; hidden payload inside

Lesson: Treat all system

inputs as potentially

malicious

24

Wrong Security Requirements

Hollywood Presbyterian

ransomware attack (2016)

Computer systems frozen;

patients transferred

What mattered more was

availability of critical services,

not data exposure

25

Why is security so hard?

• Security requirements

• Trade-offs against other requirements (e.g., usability);
security is often considered lower priority

• Threat model

• Uncertain, evolving attacker capabilities & behavior

• Attack surface

• Multiple interfaces across system layers

• Protection mechanisms

• Human factors; no mechanisms are foolproof!

26

Threat Modeling

27

Why threat model?

28

What is a threat model?

• Goal: What is the attacker trying to achieve?

• Capability:

• Knowledge: What does the attacker know?

• Actions: What can the attacker do?

• Resources: How much effort can it spend?

• Incentive: Why does the attacker want to do this?

“If you know the enemy and know yourself, you

need not fear the result of a hundred battles.”

- Sun Tzu, The Art of War

29

Attacker Goals

• What is the attacker trying to achieve?
• Typically, to undermine security requirements (recall: “CIA”)

• Example: College admission
• Access other applicants’ data without being authorized (C)
• Modify application status to “accepted” (I)

• Modify admissions model to reject certain applications (I)
• Cause website shutdown to sabotage other applicants (A)

• Relationship to security requirements
• Attacker’s goal achieved => requirement violated
• If not, the threat might not be relevant/important

• e.g., hack a website to display cat photos on front page; annoying,
but not critical

30

Attacker Capabilities

• What are the attacker’s actions?

• Highly depends on system boundary & its exposed
interfaces

• Examples

• Physical: Break into building & steal server

• Cyber: Send malicious HTTP requests for SQL
injection, use botnets for denial-of-service

• Social: Send phishing e-mail, bribe an insider for
access

31

Attacker Capabilities & Resources

• Capabilities: What are the attacker’s actions?

• Resources: Can the attackers actually perform these
actions?

• Level of available resources:

• Juveniles: Download & run script kiddies

• Organized hacking group: Set up botnets on multiple
servers, mass-spam phishing e-mails

• State sponsored: Develop & deploy highly complex,
targeted malware (e.g., Stuxnet)

32

Threat Modeling Method: STRIDE

• A systematic approach to identifying attacks

• Construct a component diagram with components & connections
• Indicate trust boundaries (trusted vs. untrusted components)

• For each untrusted connection or component, enumerate STRIDE
threats & check whether it can lead to a possible attack

• For each possible threat, devise a mitigation strategy

33

STRIDE Example: College Admission

• Spoofing: ?

• Tampering: ?

• Information disclosure: ?

• Denial of service: ?

34

STRIDE Example: College Admission

• Spoofing: Attacker pretends to be another applicant by using weak passwords to log in

• Tampering: A malicious staff logs into Admin Front End and modifies applicant data

• Information disclosure: Attacker intercepts HTTP requests from/to server to read applicant info

• Denial of service: Attacker creates many bogus accounts & overwhelms system with requests

35

Mitigating Threats

• Four options

1. Redesign the system to eliminate the threat (e.g., eliminate or
restrict the API endpoint from the attack surface)

2. Apply standard mitigations (next slide)

3. Invent new mitigations (risky!)

4. Accept the vulnerability in design, if the threat is unlikely or has
low consequences

• Option 4 is reasonable and more common than one might expect; it
is expensive to address every possible threat in the system!

36

Mitigation Standards

41 © 2012 Carnegie Mellon University

Standard Mitigations

Spoofing Authentication To authenticate principals:

• Cookie authentication

• Kerberos authentication

• PKI systems such as SSL/TLS and certificates

To authenticate code or data:

• Digital signatures

Tampering Integrity • Windows Vista Mandatory Integrity Controls

• ACLs

• Digital signatures

Repudiation Non Repudiation • Secure logging and auditing

• Digital Signatures

Information Disclosure Confidentiality • Encryption

• ACLS

Denial of Service Availability • ACLs

• Filtering

• Quotas

Elevation of Privilege Authorization • ACLs

• Group or role membership

• Privilege ownership

• Input validation

37

Inventing New Mitigations

38

Inventing New Mitigations

• Don’t do it!

• Inventing new security mechanisms (e.g., encryption scheme)
requires deep expertise in security

• And is generally really hard to get right

• Even experts make mistake; non-experts almost certainly will

• e.g., Protocols/systems that have been around for many years/decades
get broken by new, clever attacks (e.g., Heartbleed, Spectre/Meltdown)

• Reuse existing, well-established security protocols/libraries

• If you really need to invent something new, hire/consult a security
expert to do it!

39

STRIDE Example: Mitigations

• Spoofing: Attacker pretends to be another applicant by logging in

• Mitigation: Require two-factor authentication

• Tampering: A malicious staff logs into Admin Front End and modifies
applicant data

• Mitigation: Disable staff users from modifying application data

• Information disclosure: Attacker intercepts HTTP requests from/to
server to read applicant info

• Mitigation: Use encryption (HTTPS)

• Denial of service: Attacker creates many bogus accounts and
overwhelms system with requests

• Mitigation: Limit the number of requests per IP address

40

Threat Modeling Exercise: IntelliGuard (HW1)

41

Threat Modeling Exercise: IntelliGuard

• Apply STRIDE to one person’s design from HW1

• Identify a security requirement for your system

• Construct a component diagram with components & connections

• Indicate trust boundaries (trusted vs. untrusted components)

• For each untrusted connection or component, enumerate STRIDE threats

• For each possible threat, devise a mitigation strategy

42

Threat Modeling: Challenges

• In practice, threat modeling is hard!

• Generally impossible to identify all possible threats
• “unknown unknowns”

• Threats evolve constantly
• New malware, exploits, increasing computational power of attacker

• But you don’t always need to get this perfect
• Focus on most critical requirements & relevant threats

• Basic mitigations (e.g., HTTPS/encryption) go a long way to prevent
many common attacks

• Don’t re-invent: Reuse available security knowledge (e.g., OWASP)

43

Open Web Application Security Project (OWASP)

44

Principles for Secure Design

Slides adapted from: John Mitchell@Stanford

45

Security Mindset

• Assume that some system components will be compromised eventually

• Don't assume users will behave as expected; assume all inputs to the
system as potentially malicious

• Aim for risk minimization, not perfect security (it’s impossible anyway)

46

Principles

• Principle of least privilege
• A component should be given the minimal privileges needed to

fulfill its functionality

• Goal: Minimize the impact of a compromised/malicious component

• Examples
• Database: A hospital receptionist should be able to view/modify

only appointment records, not patients’ medical data

• Web service: A web server runs under a restricted user account
rather than as a root

• Container: Software running within a contain can only read/write
to its own allocated memory

47

Example: Android

• App may need to access OS
functions (e.g., camera, network...)

• In earlier versions of Android:
• Weaknesses in the permission

system
• Malicious apps could gain access

to OS functions -> over-privilege!
• Read/modify the user’s sensitive

data; expose them over the
network

• Now: By default, no access given
unless granted permissions by the
user

48

Principles

• Security by obscurity

• Hide details about the inner workings of a security mechanism
(e.g., a protocol, an encryption library)

• Typically involves making code closed source

• Goal: Make it difficult for the attacker to figure out how to break
the security mechanism

• Q. Does this work in practice? Why/why not?

49

Enigma Machine

50

Principles

• Security by obscurity

• Security by open design

• Make details about the inner workings of a security mechanism
open to external observers

• Typically involves making code open source

• Goal: Improve the security of the system design by having
experts/observers review and test it

• Not perfect; there will still be vulnerabilities that are missed
(e.g., Heartbleed)

• But generally accepted to be a better practice than obscurity!

51

Principles

• Isolation

• Components should interact with each other no more than
necessary.

• Achieved through compartmentalization

• Careful interface design with minimal function/information
exposed (recall: information hiding!)

• OS or hardware-based isolation mechanisms (e.g., virtualization)

• Air gap: Eliminate input/output to/from a system/component by
removing network connections

• Goal: Reduce the size of trusted computing base (TCB)

52

Trusted Computing Base (TCB)

• Components that are responsible for establishing a security
requirement(s)

• If any component in TCB compromised, the security of the
entire system is compromised!

• Conversely, a compromise in non-TCB component means
security can still be preserved

• Major design goal in security: Minimize TCB

• Smaller TCB, less software to inspect and test for security

• In poorly designed systems, TCB is often the entire system

53
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

54
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

55
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User display

File system

Compromise in one part of the system may

impact the security of the entire system!

Monolithic Design
TCB is the

entire system!

56

John Mitchell

Component design

Network

User input

File system

Network

User display

File system

Compartmentalized Design

57

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Compartmentalized Design

58

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Flaw in one part of the system has

limited impact on overall system security!

Compartmentalized Design

Much smaller

TCB!

59

Example: Mail Agent

• Functional requirements

• Receive & send email over external network

• Place incoming email into local user inbox files

• Sendmail

• Used in many UNIX systems

• Monolithic design

• Historically, source of many vulnerabilities

• Qmail

• “Security-aware” mail agent

• Compartmentalized design

60

John Mitchell

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Qmail Architecture

61

Qmail Design

• Isolation based on OS process isolation

• Separate modules run as separate “users” (UID)

• Each module only has access to specific resources (files,
network sockets, …) and only passes necessary data

• Principle of least privilege

• Minimal privileges for each UID

• Mutually untrusting components; validate every input

• Only one “root” user (with all privileges), but limited to a small
part of the system

• In comparison, entire Sendmail runs as root! (TCB =
entire application!)

62

John Mitchell

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Receives incoming

external emails

Even if compromised,

it has limited impact

(vs. sendmail: runs

as root)

Qmail Architecture

63

John Mitchell

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

< 500 LOC (vs. ~67K LOC in sendmail)

Qmail Architecture

Much smaller TCB

compared to Sendmail!

64

Another Example: Radiation Therapy

65

Radiation Therapy: Critical Requirement

“If door is opened during
treatment, immediately

stop the radiation by

inserting the beam block”

66

Component Responsibilities

• Event Handler: 3rd party pub-
sub framework, handles all
messages within the system

• Event Logger: Logs every
message sent & received over
the pub-sub network

• Treatment Manager:
Receives sensor input from
Door Controller and send
instruction to Beam Manager

• Beam Manager: Send
command to Beam Controller

67

Is TCB too large?

• To ensure the requirement, the
system needs to rely on all of
these components functioning
correctly

• TCB = components in red

• If any of them fails or is
compromised, the system may
fail to satisfy the requirement

• But some components are
difficult to make secure!

• e.g., Event handler is closed
source; can’t test/analyze

68

Alternative Design

• Emergency Unit serves a
single purpose and is much
simpler; can be tested
thoroughly for security

• Can't eliminate possible
failures, but a significantly
smaller TCB compared to the
previous design!

• Caveat: Also makes the
overall system more complex
and costly

• Like robustness, improving
security adds costs!

69

Exercise: TCB for IntelliGuard

• What is an important security requirement to achieve?

• What is the TCB for your system?

• Is there a way to re-design the system to reduce the TCB?

70

Summary: Design Questions for Security

• What are the major components of my system? How do
they interact? What information is passed between them?

• What happens if a particular component is compromised?
How does it impact the rest of the system?

• Does any component have more privileges than needed?

• Is there sufficient isolation between components? Does a
component have unnecessary connections to other
components?

71

What I haven’t talked about

• Security analysis

• Testing, static & dynamic analysis, formal methods

• Huge topic; see 15-316 or 18-732

• Human factors

• Often the weakest link in the design!

• Treat users & operators as part of threat model and attack
surface

• Clearly define user roles & their privileges

• Treat all user inputs as potentially malicious

72

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Security: Why should we (not) care?
	Slide 9: Security: Why should we care?
	Slide 10: Elements of Security
	Slide 11: Key Elements of Security
	Slide 12: Security Requirements
	Slide 13: Example: Graduate Admission System
	Slide 14: Confidentiality, Integrity, Availability, or None?
	Slide 15: Confidentiality, Integrity, Availability, or None?
	Slide 16: Other Security Requirements
	Slide 17: Key Elements of Security
	Slide 19: What makes security hard?
	Slide 20: Wrong Threat Model
	Slide 21: Wrong Threat Model
	Slide 22: Unidentified Attack Surface
	Slide 23: Insufficient Protection Mechanism
	Slide 24: Wrong Security Requirements
	Slide 25: Why is security so hard?
	Slide 26: Threat Modeling
	Slide 27: Why threat model?
	Slide 28: What is a threat model?
	Slide 29: Attacker Goals
	Slide 30: Attacker Capabilities
	Slide 31: Attacker Capabilities & Resources
	Slide 32: Threat Modeling Method: STRIDE
	Slide 33: STRIDE Example: College Admission
	Slide 34: STRIDE Example: College Admission
	Slide 35: Mitigating Threats
	Slide 36: Mitigation Standards
	Slide 37: Inventing New Mitigations
	Slide 38: Inventing New Mitigations
	Slide 39: STRIDE Example: Mitigations
	Slide 40: Threat Modeling Exercise: IntelliGuard (HW1)
	Slide 41: Threat Modeling Exercise: IntelliGuard
	Slide 42: Threat Modeling: Challenges
	Slide 43: Open Web Application Security Project (OWASP)
	Slide 44: Principles for Secure Design
	Slide 45: Security Mindset
	Slide 46: Principles
	Slide 47: Example: Android
	Slide 48: Principles
	Slide 49: Enigma Machine
	Slide 50: Principles
	Slide 51: Principles
	Slide 52: Trusted Computing Base (TCB)
	Slide 53: Monolithic Design
	Slide 54: Monolithic Design
	Slide 55: Monolithic Design
	Slide 56: Compartmentalized Design
	Slide 57: Compartmentalized Design
	Slide 58: Compartmentalized Design
	Slide 59: Example: Mail Agent
	Slide 60: Qmail Architecture
	Slide 61: Qmail Design
	Slide 62: Qmail Architecture
	Slide 63: Qmail Architecture
	Slide 64: Another Example: Radiation Therapy
	Slide 65: Radiation Therapy: Critical Requirement
	Slide 66: Component Responsibilities
	Slide 67: Is TCB too large?
	Slide 68: Alternative Design
	Slide 69: Exercise: TCB for IntelliGuard
	Slide 70: Summary: Design Questions for Security
	Slide 71: What I haven’t talked about
	Slide 72: Summary

