
Problem vs. Solution Space
17-423/723 Designing Large-Scale Software Systems

Lecture 2
Jan 15, 2025



Looking Ahead

Next 2~3 weeks: Foundational techniques and tools for design
Domain & design modeling, quality attributes & trade-offs, generating design 
ideas, design review, design processes 

Second half of the course: Designing for quality attributes
Design for change, interoperability, reuse, scalability, robustness, security, AI,...



Project Overview: Medical Appointment App



Challenges

https://www.technologyreview.com/2021/01/30/1017086/cdc-44-million-vaccine-data-vams-problems/

https://www.technologyreview.com/2021/01/30/1017086/cdc-44-million-vaccine-data-vams-problems/


Challenges

Changeability: Changing vaccine requirements, policies, user requirements

Reusability: Service reuse across multiple locations with varying policies

Interoperability: Sharing information across multiple systems

Scalability: Increasing number of appointment requests

Usability: Users with varying experience in technology

Security/privacy: Storage and sharing of sensitive data



Project Milestones

M1: Initial system design

M2: Prototype implementation & deployment 

M3: Iterative design for feature extension <-- cross-team collaboration

M4: Service integration <-- cross-team collaboration

M5: Iterative design for additional qualities

M6: Final project presentation



Today’s Learning Goals

● Recognize the distinction between the problem and solution space
● Describe requirements, domain assumptions, and specifications for a system
● Specify a context model to communicate key elements of a domain
● Describe two perspectives on design: Design as problem solving vs. design 

as problem setting



Problem vs. Solution Space



Problem space (aka domain or world)
Physical entities in the real world, their 
behaviors & relationships
Part of the world that software may 
influence, but cannot directly control 

Solution space (aka machine)
A product (i.e., software) to be developed 
to solve the customers’ problem
A combination of software components 
that you have creative control over

Problem vs. Solution Space

Machine
(software)

World
(domain)



Understanding problem space is a critical part of design!



Major Cause of Software Failures

An investigation of software-related failures by 
the US National Research Council

Studied failures in a wide range of domains 
such as aeronautics, electricity grids, 
automotive, healthcare, financial services

Bugs in code account only for 3% of fatal 
software accidents

Most failures due to poor understanding of the 
problem space or usability issues



Example: Lane Departure Warning (LDW) System

System (LDW) Requirement: Alert the driver by displaying a warning when the 
car is about to go over the lane



Example: Lane Departure Warning (LDW) System

Q. What are different types of entities in the world (problem space)? 



Shared Phenomena

Shared phenomena: Interface between the world & software
Input: Information generated through Lidar, camera, pressure sensors, GPS
Output: Signals generated & sent to the departure warning system

Software can influence the world only through the shared interface
Beyond this interface, we can only assume how the entities in the world will behave



Requirement, Assumptions, and Specification

Requirement (REQ): What the system must achieve, in terms of desired effects on the world
Specification (SPEC): What software must implement, expressed over the shared interface



Requirement, Assumptions, and Specification

Requirement (REQ): What the system must achieve, in terms of desired effects on the world
Specification (SPEC): What software must implement, expressed over the shared interface
Domain assumptions (ASM): What’s assumed about the behavior/properties of the world; 
bridges the gap between REQ and SPEC

SPEC /\ ASM ⇒ REQ



Satisfaction Argument

Requirement (REQ): What the system must achieve, in terms of desired effects on the world
Specification (SPEC): What software must implement, expressed over the shared interface
Domain assumptions (ASM): What’s assumed about the behavior/properties of the world; 
bridges the gap between REQ and SPEC

SPEC /\ ASM ⇒ REQ

“If my software is implemented 
correctly (SPEC) and the world 
behaves as assumed (ASM), 
then the system achieves its 
requirement (REQ)”



Q. What are assumptions (ASM) that are necessary to ensure the system 
requirement (REQ)?

Q. What is the responsibility of the LDW software (SPEC)?

Example: Lane Departure Warning (LDW) System

Domain entities: Lane 
markings, lane sensors, 
vehicle, driver



Missing or incorrect assumptions are a common cause of system failures

Assumptions constraint the space of possible solutions (i.e., software)

● Determine what’s actually viable as a product
● Determine what the responsibility of software should be 

Identifying domain entities & assumptions is one of the first steps in any design process!

Why do we care about domain assumptions?



Q. Examples from your own experience?

Assumptions: Other Examples



“The nurse always enters the correct amount of medicine”

“Both of the engines on a plane will not fail at the same time”

“Users will have access to a mobile device with GPS enabled”

“The battery will last for the next 300 hours”

“The user will never store the password in a plaintext on Github”

“The driver will be fully attentive and always have their hands on the steering 
wheel”

Assumptions: Other Examples



What could go wrong?

● Missing or invalid assumptions (ASM)
● Missing or inconsistent requirement (REQ)
● Incorrect/violated specification - for example, due to a bug in code (SPEC)
● Inconsistent spec and assumptions (SPEC /\ ASM implies false) 

SPEC /\ ASM ⇒ REQ



Assumptions are often violated!



Assumption violations are a common cause of failures

[Tesla]… has also said both 
technologies "require active 
driver supervision," with a 
"fully attentive" driver whose 
hands are on the wheel, 
"and do not make the 
vehicle autonomous."



Another Example: Lufthansa 2904 Runway Crash 
Reverse thrust (RT): 
Decelerates plane during landing 
When plane is on the ground, the RT system 
should be activated
Conversely, if the plane is in the air, it is unsafe to 
enable RT!

Safety requirement (REQ):
RT is enabled if and only if plane is on the ground

Q. Suppose you want to implement this feature 
using software. How should the software know 
if the plane is on the ground?
One answer: Check whether the wheel is turning



Another Example: Lufthansa 2904 Runway Crash 
Reverse thrust (RT): Decelerates plane during 
landing
Safety requirement (REQ):
RT is enabled if and only if plane is on the ground
What was implemented by software (SPEC):
RT is enabled if and only if wheel turning
What was assumed (ASM):
Wheel is turning if and only if it’s on ground

But sometimes runway gets wet due to rain!

● Wheel failed to turn fast enough when plane 
was on ground

● Assumption (ASM) was violated!
● Pilot attempted to enable RT, but it was 

overridden by the software
● Plane went off the runway and crashed



Discussion: Remote Classroom

As an IT developer for the Pittsburgh Public School, you’ve been tasked with 
designing a system for enabling transition to remote education during pandemic.

Q. What are different entities and stakeholders in the problem space?
Q. What are domain assumptions (ASM) needed to ensure that every student 
continues to receive education (REQ)?





Communicating Domain Knowledge



Domain Models

Textual/graphical descriptions of the domain (i.e,. problem space), depicting its key 
entities and assumptions

Why build a domain model?
Establish common terminology & assumptions with stakeholders and other teams
Analyze to identify missing entities or missing/incorrect assumptions
Serve as a reference for subsequent design decisions

In this class, we will use a type of domain model called a context model



There are many notations/diagrams/approaches for specifying models (e.g., UML)
In this class, we will stick to simple, lightweight notations for modeling
Our goal is to communicate ideas, not to document everything!

(Digression)



Context Model: Elements

Entity
Stakeholders, users, physical objects, conceptual objects
One single, special “machine” entity is reserved for the software component

Interaction
A relationship between a pair of entities: Physical interactions, events, information, etc., 

Requirement (REQ)
A relationship among entities that is desired, but not satisfied yet; a system will be designed 
& built to make this true

Assumptions (ASM)
A statement about a property or behavior of an entity, necessary for satisfying a requirement

Specification (SPEC)
A statement about the responsibility of the machine (i.e., software)



Requirement (REQ): If the vehicle is about to cross the lane, alert the driver by 
displaying a warning

Example: Lane Departure Warning (LDW) System



Context Model for LDW

Domain
Entities

Requirement (REQ)

Interactions

Machine entity

“refers to”



Context Model for LDW Assumptions (ASM)
Lanes: Lane markings are continuous 
and clearly visible
Lane sensors: Sensors capture the lane 
markings at a sufficiently high resolution
Driver: Driver is attentive of the 
dashboard display
Warning system: Given a warning 
signal, it immediately displays the 
warning on the dashboard

Specification (SPEC) 
LDW software shall detect lane departure 
in input images & generate a warning 
signal if detected



Context Model for LDW

Q. Why isn’t the machine (LDW 
software) entity directly connected to the 
lanes or drivers?

Q. Why isn’t the warning system part of 
the machine (software) entity?

Q. Why didn’t I include an entity for the 
steering wheel?



Machine Entity

One single, special “machine” entity is reserved for the software component

Q. Why don’t we further describe this in detail by breaking it into multiple 
entities?

A. Avoid premature design decisions! At this point, we are still trying to 
understand the problem space.



Where do domain assumptions come from?

Short answer: From talking to stakeholders, users, and domain experts!

There is an entire subarea of software engineering called requirements engineering, which 
studies how to elicit, specify, and analyze requirements from the problem domain 

In this class, we will not go deep into this topic (but we will come back to it from time to time!)



Analyzing the context model

● Missing or invalid assumptions (ASM)
● Missing or inconsistent requirement (REQ)
● Incorrect/violated specification (SPEC)
● Inconsistent spec and assumptions (SPEC /\ ASM implies false) 

SPEC /\ ASM ⇒ REQ

Apply adversarial thinking!
- What are possible ways to break the 
argument “SPEC /\ ASM => REQ”? 
- What are possible ways to violate an 
assumption?



Context Model for LDW Assumptions (ASM)
Lanes: Lane markings are continuous 
and clearly visible
Lane sensors: Sensors capture the lane 
markings at a sufficiently high resolution
Driver: Driver is attentive of the 
dashboard display
Warning system: Given a warning 
signal, it immediately displays the 
warning on the dashboard

Q. Which of these assumptions may not 
hold in practice? What’s a more 
reasonable assumption? How does this 
change the responsibility of software?



Context Model for Lane Keeping Assist (LKA)
Assumptions (ASM)
Driver: Driver might not be fully attentive 
of the dashboard display
Steering Wheel Controller: It steers the 
vehicle based on the command received

Specification (SPEC)
LKA software shall detect lane departure 
in input images & generate a warning 
signal; if the driver does not respond in 
time, it shall generate a command to 
steer the vehicle back into the lane



A recipe for building a context model

1. State a requirement to be achieved by the system (REQ)
2. Identify entities that are referenced by the requirement
3. Identify other entities that interact with those entities in the real world
4. Connect domain entities to the software component 
5. Design the specification (SPEC) on the software component that is needed to 

satisfy REQ
6. Identify domain assumptions (ASM) that are needed along with SPEC to 

satisfy REQ
7. Check whether any of the assumptions may be violated in practice
8. If so, relax ASM to reflect possible violations and design a new SPEC to 

ensure that SPEC /\ ASM => REQ

More in 
recitation!



Missing or incorrect assumptions are a common cause of system failures

Assumptions constraint the space of possible solutions and determine the 
responsibility of software

In most cases, it is impossible to come up with a complete list of domain 
assumptions (Q. Why?)

But the process of identifying and documenting assumptions can help reduce 
potential risks & communicate domain knowledge to stakeholders & other team 
members

Closing Thoughts



Two Perspectives on Design



Perspective: Design as Problem Solving

Design is a systematic, rational process
A description of a problem space & constraints (i.e., 
assumptions) is given
Designer makes a sequence of design decisions
Each candidate solution is evaluated until a 
satisfactory design is found

Simon hinted that one day, this process could be 
automated by computers



Perspective: Design as Problem Setting

Design is a conversation between the problem 
space & the designer
Simon’s model is flawed; designers don’t actually 
work like this in practice
As the designer explores possible solutions, they 
learn more about the problem itself
Outcome of design is both the product & also an 
increased understanding of the problem space

This is unlikely to be fully automatable by computers



Discussion: Simon vs.Schön 

Q. Which one do you think is the “right” model of design?



Design is an iterative, continuous process!



Summary

● Exit ticket!



Further Readings on Problem & Requirements Understanding 

● Problem Frames: Analysing and Structuring Software Development Problems. 
Michael A. Jackson. Addison-Wesley, 2000.

● Requirements Engineering: From System Goals to UML Models to Software 
Specifications. Axel van Lamsweerde. Wiley, 2009.

● Software Requirements and Specifications: A Lexicon of Practice, Principles 
and Prejudices. Michael A. Jackson. Addison-Wesley Professional, 1995.

● Domain-driven Design: Tackling Complexity in the Heart of Software. Eric 
Evans. Addison-Wesley Professional, 2003.



Summary

● Software alone cannot fulfill system requirements
○ They are just one part of the system, and have limited control over the world

● Domain assumptions are just as critical in achieving requirements
○ If you ignore/misunderstand these, your system may fail or do poorly (no matter how perfect 

your software is)
● Identify and document these assumptions as early as possible
● Some of the assumptions may be violated over time as the world evolves
● You are never done with identifying assumptions


