
17-423/723:
Designing Large-scale
Software Systems
Design for Security
April 3, 2024

2

Learning Goals
• Describe key elements of security design and analysis
• Describe the major challenges of achieving security in practice
• Apply threat modeling to identify potential threats and mitigations
• Apply design principles to improve the security of a system

3

Why should we care about security?

4

Source: ABC news, Oct 12, 2014

5

Colonial Pipeline Attack, 2021

6

Source: Wired, Feb 8, 2021

7

Source: Wall Street Journal, Sept 30, 2021

8

Security: Why should we (not) care?

• Security is expensive!

• Incurs additional development cost; requires security expertise in
your team or organization

• Annoys the user and interferes with their tasks (e.g., two-factor
authentication)

• Not properly regulated or enforced by law

• Often retroactively added after an incident, to avoid embarrassment,
lawsuits, and fines (sometimes)

9

Security: Why should we care?
• But increasingly wider range of harms are caused by security

attacks
• It’s not just about data leaks anymore
• Can cause safety failures; physical, environmental, mental harms
• Viewpoint: We can't all be security experts, but:

• Should be aware of possible consequences of no/little security
• Understand basic design principles; avoid common pitfalls
• Know how to apply best design practices
• Know how to talk to security experts

10

Elements of Security

11

Key Elements of Security
• Security requirements (sometimes called security policies)

• What needs to be protected?
• Threat model

• What are the goals & capabilities of an attacker?
• Attack surface

• Which parts of the system are exposed to an attacker?
• Protection mechanisms

• How do we prevent an attacker from compromising a
security requirement?

12

Security Requirements
• Common security requirements:

"CIA triad" of information security
• Confidentiality: Sensitive data

must be accessed by authorized
users only

• Integrity: Sensitive data must be
modifiable by authorized users
only

• Availability: Critical services must
be available when needed by
clients

13

Example: Graduate Admission System

14

Confidentiality, Integrity, Availability, or None?
• Applications to the MSE program can only be viewed by staff and

faculty in S3D.
• The site should be able to handle up to 200 concurrent requests

on the application deadline.
• Application decisions are recorded only by the program director.
• The application site should backup all applications in case of a

server failure.
• The acceptance notices can only be sent out by the program

director.

15

Confidentiality, Integrity, Availability, or None?
• Applications to the MSE program can only be viewed by staff and

faculty in S3D. Confidentiality
• The site should be able to handle up to 200 concurrent requests

on the application deadline. Availability
• Application decisions are recorded only by the program director.

Integrity
• The application site should backup all applications in case of a

server failure. None (not a requirement, but a design decision)
• The acceptance notices can only be sent out by the program

director. Integrity

16

Other Security Terms
• Authenticity: The identity of a user can be verified to be whom

they claim to be
• Non-repudiation: Certain changes or actions in the system can be

traced to who was responsible for it
• Authorization: Only users with the right permissions can access a

resource or perform an action

17

Key Elements of Security

• Security requirements (sometimes called security policies)
• What needs to be protected?

• Threat model
• What are the goals & capabilities of an attacker?

• Attack surface
• Which parts of the system are exposed to an attacker?

• Protection mechanisms
• How do we prevent an attacker from compromising a

security requirement?

18

Security Analysis
Having identified:
• Security requirements
• Threat model
• Attack surface
• Protection mechanisms

Does the system deploy sufficient protection mechanisms to
establish its security requirements in the presence of an
attacker who may attempt to compromise the system through
its attack surface?

19

What makes security hard?

20

Wrong Threat Model

21

Wrong Threat Model
Maginot Line (1930s)
Built by France to deter
invasion; state-of-the-art
engineering

Germans reformulated
plans after WWI; invade
across Belgium

22

Unidentified Attack Surface

Château Gaillard (1200s,
Normandy, literally “Strong
Castle”)
Impervious; under siege for 6
months by Phillip II (France)

Eventually conquered by
climbing through toilet chute

23

Insufficient Protection Mechanism
Trojan Horse (Greeks vs
Troy; 12th BC?)
Disguised as a harmless
trophy; hidden payload inside

Lesson: Treat all system
inputs as potentially
malicious

24

Wrong Security Requirements

Hollywood Presbyterian
ransomware attack (2016)
Computer systems frozen;
patients transferred

What mattered more was
availability of critical services,
not data exposure

25

Why is security so hard?
• Security requirements

• Trade-offs against other requirements (e.g., usability);
security is often considered lower priority

• Threat model
• Uncertain, evolving attacker capabilities & behavior

• Attack surface
• Multiple interfaces across system layers

• Protection mechanisms
• Human factors; no mechanisms are foolproof!

26

Threat Modeling

27

Why threat model?

28

What is a threat model?
• Goal: What is the attacker trying to achieve?
• Capability:

• Knowledge: What does the attacker know?
• Actions: What can the attacker do?
• Resources: How much effort can it spend?

• Incentive: Why does the attacker want to do this?

“If you know the enemy and know yourself, you
need not fear the result of a hundred battles.”
- Sun Tzu, The Art of War

29

Attacker Goals
• What is the attacker trying to achieve?

• Typically, to undermine security requirements (recall: “CIA”)
• Example: College admission

• Access other applicants info without being authorized (C)
• Modify application status to “accepted” (I)
• Modify admissions model to reject certain applications (I)
• Cause website shutdown to sabotage other applicants (A)

• Relationship to security requirements
• Attacker’s goal achieved => requirement violated
• If not, the threat might not be relevant/important
• e.g., hack a website to display cat photos on front page; annoying,

but not critical

30

Attacker Capabilities
• What are the attacker’s actions?

• Highly depends on system boundary & its exposed
interfaces

• Examples
• Physical: Break into building & steal server
• Cyber: Send malicious HTTP requests for SQL

injection, use botnets for denial-of-service
• Social: Send phishing e-mail, bribe an insider for

access

31

Attacker Capabilities & Resources
• Capabilities: What are the attacker’s actions?
• Resources: Can the attackers actually perform these

actions?
• Level of available resources:

• Juveniles: Download & run script kiddies
• Organized hacking group: Set up botnets on multiple

servers, mass-spam phishing e-mails
• State sponsored: Develop & deploy highly complex,

targeted malware (e.g., Stuxnet)

32

Threat Modeling Method: STRIDE

• A systematic approach to identifying attacks
• Construct a component diagram with components & connections
• Indicate trust boundaries (trusted vs. untrusted components)
• For each untrusted connection or component, enumerate

STRIDE threats & check whether it is a possibility
• For each possible threat, devise a mitigation strategy

33

STRIDE Example: College Admission

• Spoofing: ?
• Tampering: ?
• Information disclosure: ?
• Denial of service: ?

34

STRIDE Example: College Admission

• Spoofing: Attacker pretends to be another applicant by using weak passwords to log in
• Tampering: A malicious staff logs into Admin Front End and modifies applicant data
• Information disclosure: Attacker intercepts HTTP requests from/to server to read applicant info
• Denial of service: Attacker creates a large number of bogus accounts and overwhelms system

with requests

35

STRIDE Example: Mitigations
• Spoofing: Attacker pretends to be another applicant by logging in

• Mitigation: Require two-factor authentication
• Tampering: A malicious staff logs into Admin Front End and modifies

applicant data
• Mitigation: Disable staff users from modifying application data

• Information disclosure: Attacker intercepts HTTP requests from/to server
to read applicant info

• Mitigation: Use encryption (HTTPS)
• Denial of service: Attacker creates many bogus accounts and overwhelms

system with requests
• Mitigation: Limit the number of requests per IP address

36

STRIDE Exercise: COVID Scheduling App

• Apply STRIDE to your scheduling system:
• Construct a component diagram with components & connections
• Indicate trust boundaries (trusted vs. untrusted components)
• For each untrusted connection or component, enumerate STRIDE threats &

check whether it is a possibility
• For each possible threat, devise a mitigation strategy

37

Threat Modeling: Challenges

• Threat modeling is really hard in practice
• Identifying “unknown unknowns”

• In general, impossible to identify all possible threats

• Threats evolve constantly
• New malware, exploits, increasing computational power of attacker

• But you don’t always need to get this perfect
• Focus on most critical requirements & relevant threats
• Basic mitigations (e.g., HTTPS/encryption) go a long way to prevent

many common attacks
• Don’t re-invent: Reuse available security knowledge (e.g., OWASP)

38

Open Web Application Security Project (OWASP)

39

Principles for Secure Design

Slides adapted from: John Mitchell@Stanford

40

Security Mindset

• Assume that some system components will be compromised eventually
• Don't assume users will behave as expected; assume all inputs to the

system as potentially malicious
• Aim for risk minimization, not perfect security (it’s impossible anyway)

41

Principles
• Principle of least privilege

• A component should be given the minimal privileges
needed to fulfill its functionality.

• Goal: Minimize the impact of a compromised component.
• Isolation

• Components should be able to interact with each other no
more than necessary.

• Goal: Reduce the size of trusted computing base (TCB)
• Q. Relationship to information hiding?

42

Trusted Computing Base (TCB)
• Components responsible for establishing a security

requirement(s)
• If any component in TCB compromised, the security of the

entire system is compromised!
• Conversely, a compromise in non-TCB component means

security can still be preserved
• Design goal: Minimize TCB

• Smaller TCB, less software to inspect and test for security
• In poor system designs, TCB is the entire system

43
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

44
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

Monolithic Design

45
John Mitchell

Monolithic design

System

Network

User input

File system

Network

User display

File system

Compromise in one part of the system may
impact the security of the entire system!

Monolithic Design

46

John Mitchell

Component design

Network

User input

File system

Network

User display

File system

Compartmentalized Design

47

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Compartmentalized Design

48

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

Flaw in one part of the system has
limited impact on overall system security!

Compartmentalized Design

49

Mail Agent

• Functional requirements
• Receive & send email over external network

• Place incoming email into local user inbox files

• Sendmail
• Used in many UNIX systems

• Monolithic design

• Historically, source of many vulnerabilities

• Qmail
• “Security-aware” mail agent

• Compartmentalized design

50

Qmail Design

• Isolation based on OS process isolation
• Separate modules run as separate “users” (UID)
• Each module only has access to specific resources (files,

network sockets, …) and only passes necessary data
• Principle of least privilege

• Minimal privileges for each UID
• Mutually untrusting components
• Only one “root” user (with all privileges), but limited to a

small part of the system
• In comparison, entire Sendmail runs as root!

51

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Qmail Architecture

52

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

Receives incoming
external emails
Even if compromised,
it has limited impact
(vs. sendmail: runs
as root)

Qmail Architecture

53

John Mitchell

Isolation by Unix UIDs
qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild user
qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

< 500 LOC (vs. ~67K LOC in sendmail)

Qmail Architecture

54

Questions for Secure Design
• What are the major components of my system? How do they

interact? What information is passed between them?
• What happens if a particular component is compromised?

How does it impact the rest of the system?
• Does any component have more privileges than needed?
• Is there sufficient isolation between components? Does a

component have unnecessary connections to other
components?

55

What I haven’t talked about today
• Security analysis

• Testing, static & dynamic analysis, formal methods
• Huge topic; see 15-316 or 18-732

• Human factors
• Often the weakest link in the design!
• Treat users & operators as part of threat model and attack

surface
• Clearly define user roles & their privileges
• Treat all user inputs as potentially malicious

56

Summary
• Exit ticket!

