
17-423/723: 
Designing Large-scale 
Software Systems

Design for Usability
April 7, 2025



2

Learning Goals

• Describe the basic concepts in usability and the goal of 
usable design

• Identify a user’s mental model for the system being designed

• Identify potential mismatches between the mental model and 
the system

• Apply strategies to help adjust the user’s mental model to the 
system



3



4

Usability Concepts

• Learnability: How easy is it for users to perform a task the 
first time?

• Efficiency: After learning, how efficiently can users perform 
the task?

• Memorability: Can users remember to perform the task after 
a period of not using the system?

• Errors: How often do users make errors, how severe are 
these errors, and how easily can they recover from the errors?

• Satisfaction: How pleasant is it to use the design?



5

Interaction Cost

• Amount of mental & 
physical effort to 
perform a desired task

• Reading, scrolling, 
clicking, typing, 
switching contexts, 
memorizing

• Goal of usable 
design: Minimize 
interaction cost while 
allowing users to 
achieve their goals



6

Mental Model • A person’s expectation 
and belief of how a 
system works

• What is the sequence 
of actions that I need 
to do to complete my 
task?

• What is the current 
state of the system?

• What actions can I 
perform from the 
current state?

• What will happen next 
if I perform Action X?



7

Designers Users

What the designer sees ≠ what the user sees!



8

Mental Model Mismatch

• Divergence between a user’s mental model & actual system 
behavior

• A mental model mismatch can manifest as the user

• Showing confusion about the current state of the system

• Being unsure about what actions are available and/or trying out 
random actions

• Performing an incorrect/erroneous action 

• Restarting or simply quitting the system



9

Mental Model Mismatch

• Divergence between a user’s mental model & actual system 
behavior

• A mental model mismatch can:

• Cause confusion and frustration in users

• Increase interaction costs

• Increase chance of user errors

• Usually these lead to negative consequences for the system

• Loss of users and revenues, complaints, low product ratings, 
accidents…



10

Example: Shopping Cart Checkout

• Common mental model for online shopping:

• Browse for items -> Add items to cart -> Choose checkout -> Enter 
shipping & billing data -> Press submit -> Get confirmation



11

Example: Shopping Cart Checkout

• Common anti-pattern: Non-
linear interaction process

• Interrupt the flow: Create 
an account, open a new 
dialog to enter a preferred 
address, suggest other 
items to buy…

• Deviates from the user’s 
mental model

• ~60% of customers 
abandon their shopping 
cart; failure to convert into 
sales!

Source: Why Your Checkout Process Should Be Completely Linear

https://baymard.com/blog/checkout-process-should-be-linear


12

Example: Gear Shifter

• Fiat Chrysler vehicles (mid 2010s)

• A new gear shifter design; radical departure from standard design

• Drivers frequently became confused between modes (e.g., Park vs. Reverse)

• 266 crashes, 68 injuries, 1.1 million vehicles recalled



13

Example: Boeing 737 MAX

• MCAS: Keep the plane nose down if the detected angle is too high

• A faulty sensor indicates high nose angle; MCAS is activated 

• Pilot sees nose being pushed down and attempts to correct, but is 
unaware that MCAS is overriding the control



14

Boeing 737 MAX

• Boeing skipped out on proper pilot training (to save costs)

• Pilots often confused & not equipped to respond to MCAS failures

• Two major accidents involving a MCAS failure:
• Lion Air Flight 610: 189 deaths (2018)
• Ethiopian Airlines Flight 302: 157 deaths (2019)



15

Mental Model Alignment

• Principle: The user’s mental model must be aligned with the 
observable behavior of the system

• Steps for achieving alignment:

• Identify the user's existing mental model

• Adjust the system to conform to the user's mental model

• Adjust the user's mental model to conform to the system



16

Identifying User’s Mental Model

• Find similar systems & identify a 
common mental model

• Mental-model inertia: Users 
tend to stick to an existing model 
and are reluctant to change

• Users rarely read 
documentation or manuals

• Users are unwilling to learn a 
new interface unless there are 
clear benefits

• Be conservative; don’t innovate in 
user interfaces unless necessary



17



18



19



20

Identifying User’s Mental Model

• Perform usability testing to identify 
a pre-existing mental model

• Build a mock-up or prototype 

• Ask potential users to perform 
common tasks & observe their 
interactions

• Record user errors or unexpected 
behaviors

• Perform an interview to identify 
user confusion



21

Identifying User’s Mental Model

• Caveat: There is no “perfect” 
mental model

• Even for the same product, 
different users likely have 
different ideas about how it 
works

• Users often have a hard time 
expressing what they think 

• In general, system should be designed assuming a flawed mental model

• A huge topic on its own:

• See article “Usability Testing 101” 

• For in-depth: Usability Engineering by Jakob Nielsen

https://www.nngroup.com/articles/usability-testing-101/


22

Adjust the System to the Mental Model

• During design: 
• Document and compare the user’s mental model against the actual 

system to identify potential mismatches

• Modify the design to reduce the mismatches

• After deployment: Collect & analyze user complaints and errors to 
identify unforeseen mismatch

• Design patterns for mental model alignment

1. Make the system state visible

2. Leverage familiarity with existing real-world concepts

3. Give control over interaction flow to the user



23

1. Make the System State Visible

• Goal: Keep the user informed of the system state 
• Provide timely feedback to notify the user of state changes

• Indicate clearly which actions are available for the user to perform

• Avoid information overload! Show only state information that is relevant 
to what the user is trying to achieve

Image source

https://www.linkedin.com/pulse/visibility-system-status-kamakshi-madankumar/


24

2. Familiarity with Real World: Skeuomorphism
• Incorporate real-world elements that are 

familiar to the user

• Goal: Leverage familiarity to reduce 
learning time and interaction costs

• Example: Trash cans in OS desktops
• Q. Other examples?

• Caveats
• Be aware of subtle differences vs. the 

real world!
• e.g., “Deleting” things by moving into trash 

doesn’t free up disk space

• Not every aspect of a real-world concept 
is useful or intuitive in digital form

• e.g., Analog clock vs. digital clock
Source: Nielsen Norman Group

https://www.nngroup.com/articles/skeuomorphism/


25

3. Give Control over Interaction Flow

• Goal: When the user makes an 
error/changes their mind, give them a 
way to adjust their plan

• Back button: Give the user an ability to 
return to the previous step in a workflow

• Undo/redo action: Allow the user to 
undo (redo) a change to the system 
state

• Exit link: Give the user with a way to 
cancel or restart the current workflow

• Make these options easily discoverable 
by the user



26

Activity: Usability of Scheduling App

• Open the Scheduling App developed by one of the group members

• Walk through the main user workflows (e.g., signing up for an 
appointment, canceling/modifying an appointment)

• Discuss the following:

• Is the relevant system state visible? Are available actions 
clearly indicated?

• Is the app using a mental mode or a concept that is familiar to 
most users?

• Does the app give the user an ability to go back, undo/redo, or 
exit/restart a workflow?



27

Aside: Dark Patterns

• Patterns that are deliberately used by a developer to deceive the 
user into performing an unintended action

• Antithesis of design patterns discussed earlier

• Make certain system states obscure/invisible

• Leverage familiarity with the real world to trick the user into an action

• Restrict or take control away from the user

• Many examples: Deceptive patterns

• Some recent regulations, but many patterns still go unpunished

https://www.deceptive.design/


28



29

Aside: Dark Patterns

• Patterns that are deliberately used by a developer to deceive the 
user into performing an unintended action

• Antithesis of design patterns discussed earlier

• Make certain system states obscure/invisible

• Leverage familiarity with the real world to trick the user into an action

• Restrict or take control away from the user

• Many examples: Deceptive patterns

• Some recent regulations, but many patterns still go unpunished

• Be a responsible designer! Do not use your design against the 
user’s best interests

https://www.deceptive.design/


34

Adjusting the Mental Model to the System

• Certain innovative products have 
user interactions that do not fit into 
an existing mental model

• Provide an aid to help the user 
adjust or develop a proper mental 
model that aligns with the system

• Strategies

• Set the user's expectations 
through onboarding

• Increase transparency about how 
the system works by explaining 
its behavior to the user



35

Onboarding

• Introduce the user to the expected interactions with the system

• Provide examples of how the system works

• Be explicit about what the system can and cannot do



36

Explaining System Behavior

• Be transparent about how 
the system behaves

• Inform the user about 
available actions

• Aid the user in gradually 
building or adjusting their 
mental model



37

Mental Model Alignment

• Principle: The user’s mental model must be aligned with the 
observable behavior of the system

• Steps for achieving alignment:

• Identify the user's existing mental model

• Adjust the system to conform to the user's mental model

• Adjust the user's mental model to conform to the system



38

Designing for Usability: Tips 

• Developers focus on design & code, and often do not see the 
software from the user’s perspective

• Ultimately, it’s the users who decide how the software will be used

• They are always right, even if they seem erratic or incompetent

• Software that is not usable will likely be misused or not used at all

• Understanding the user’s mental model is the key to usable software

• Engage with users & identify their common mental model

• Be conservative! Use an interaction design that matches an existing 
mental model

• If the product is innovative, explicitly guide the user in building an 
accurate mental model through onboarding and transparency



39

Summary

• Exit ticket!


	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3
	Slide 4: Usability Concepts
	Slide 5: Interaction Cost
	Slide 6: Mental Model
	Slide 7
	Slide 8: Mental Model Mismatch
	Slide 9: Mental Model Mismatch
	Slide 10: Example: Shopping Cart Checkout
	Slide 11: Example: Shopping Cart Checkout
	Slide 12: Example: Gear Shifter
	Slide 13: Example: Boeing 737 MAX
	Slide 14: Boeing 737 MAX
	Slide 15: Mental Model Alignment
	Slide 16: Identifying User’s Mental Model
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Identifying User’s Mental Model
	Slide 21: Identifying User’s Mental Model
	Slide 22: Adjust the System to the Mental Model
	Slide 23: 1. Make the System State Visible
	Slide 24: 2. Familiarity with Real World: Skeuomorphism
	Slide 25: 3. Give Control over Interaction Flow
	Slide 26: Activity: Usability of Scheduling App
	Slide 27: Aside: Dark Patterns
	Slide 28
	Slide 29: Aside: Dark Patterns
	Slide 34: Adjusting the Mental Model to the System
	Slide 35: Onboarding
	Slide 36: Explaining System Behavior
	Slide 37: Mental Model Alignment
	Slide 38: Designing for Usability: Tips 
	Slide 39: Summary

