17-423/723:
Designing Large-scale
Software Systems

Automated Design Analysis
April 9, 2025

Learning Goals

* Describe the limitations of testing for ensuring design quality
» Describe formal methods as an alternative approach to analyzing
software designs

» Describe two types of formal methods: Model checking and
automated reasoning

» Describe the potential benefits and limitations of formal methods

Software Quality Assurance & Testing

“We have as many testers as we have
developers. And testers spend all their
time testing, and developers spend half
their time testing.

We're more of a testing, a quality
software organization than we're a
Software organization.”

- Bill Gates

Testing: Limitations?

Q. Based on your experience, what are some
challenges and limitations with testing?

Testing: Limitations?

“Testing shows the presence,
not the absence of bugs.”

- Edsger W. Dijkstra

Formal Methods

* A class of techniques for ensuring software gquality

» Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

* Types of formal methods:
* Model checking
« Automated reasoning
* Interactive theorem proving

* Different methods, different levels of automation and guarantees
provided

« A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

Formal Methods

* A class of techniques for ensuring software gquality

» Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

* Types of formal methods:
* Model checking
« Automated reasoning
* Interactive theorem proving

* Different methods, different levels of automation and guarantees
provided

* A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

Example Domain: Medical Devices
Radiation Offers New Cures, and Ways to Do Harm

By WALT BOGDANICH JAN. 23, 2010

« 80,000 deaths & 1,700,000 injuries from medical devices since 2008 (in US)
« Actual numbers & root causes unclear; often unreported

Therac-25 Radiation Therapy Machine

“4 %4 A 0 e
5

« Used to treat patients at multiple hospitals in US & Canada during 1980s
* One of the most infamous examples of software failures in history

Therac-25: Radiation Modes

Electron Mode X-Ray Mode

Low power High power
Wide area Narrow area

« Two different modes of operation: Electron-beam (Ebeam) and X-ray modes
» Atherapist enters the patient information and mode of treatment
 In X-ray mode, a shield is inserted into the beam path to reduce treatment area

10

Therac-25: Radiation Modes

2370

Electron Mode X-Ray Mode THE PROBLEM
Low power High power High power
Wide area Narrow area Wide area

 Failure: In certain situations, the shield was not in place during the X-ray mode
« Caused radiation overdose in some patients by up to 100 times
* Killed/seriously injured 6 patients

Therac-25: What happened?

 Lack of robustness in software design
« Against (easily predictable) human errors

 Reckless reuse of code

 Lack of proper software engineering practices
» General lack of concerns for software safety

Operator Error in Therac-25

“...[Therapist] noticed that for mode she had typed "x"
(for X ray) when she had intended "e" (for electron)...the
mistake was easy to fix; she merely used the cursor up
key to edit the mode entry.”

An Investigation of the Therac-25 Accidents
Leveson & Turner, IEEE Computer, 1993

Model Checking

Design
Model / verified
P \NOA Counter-
Spec:lflcatlonW/ example 1

« An approach for automatically checking software design to find errors
* Input

« Design model: A formal, mathematical model of a system design

« Specification: A formal statement of what it means for the design to be “correct”
* Output

« Acounterexample that demonstrates how the system fails its specification

Back to Therac-25

230

Electron Mode X-Ray Mode THE PROBLEM
Low power High power High power
Wide area Narrow area Wide area

» The failure was in part caused by a race condition between the user
Interface and the beam controller

 Let's see how model checking could have been used to find this problem

Design as State Machines
‘ Design
Model

Specification

/ verified

Counter-
example

N/
/

* Design model: A formal, mathematical model of a system design

« Another common type of design model is called state machines

» Each state machine consists of states and actions

« A machine moves from one state to another state by performing an action

State Machine: Examples

« State machine for the Ul of the Therac-25 system ?
 Typical user task: [Editing
1. Select X-ray or electron beam
2. Confirm mode XV Ebeam
3. Fire the beam - up _
* An execution of the system (a trace) is captured [C;?;'{,m ‘g‘ggir{:]
as a sequence states
 There are many possible traces confirm l "b 4P lCO”f'rm
« <Editing, ConfirmXray, XrayReady, BeamFired> Xray Ebeam
» <Editing, ConfirmEbeam, EbeamReady, Ready Ready
BeamFired>

« <Editing, ConfirmXray, Up, Editing,
ConfirmEbeam, ...>

Q. How many traces are there?

Interface M;

State Machine: Examples

* Atypical system will contain multiple, ?
separate state machines (for different
components) NotSet
» This is a state machine for the beam mode Xray Ebeam
setter [Xray Ebeam]
 When Xray/Ebeam command is sent from Mode Mode
the Ul, it changes the mode of radiation Ebeaml set set eray
* There's a small delay when switching [To To X]
Ebeam O Aray
between the two modes (ToEbeam and
ToXray states)

Mode Setter Mg

State Machine: Examples

e State machine for the shield

* The shield is inserted when the user Ebeam
selects the X-ray mode L
* The shield is taken out when the user Out of
requests E-beam mode In place olace
N—
Xray
Spreader Mg

Overall Design Model for Therac-25

Ebeam

Out of
In place place

Xray

Confirm
Xray

Mode Setter My

Spreader Mg

Interface M;

« The overall design model is a composition of the three state machines

* The state machines interact by performing common actions together &
making state transitions in parallel

Specification

Design
Model

‘ Specification

» Specification: A formal statement of what it means for the design
to be “correct’

* There are many different languages for writing specifications

* We will talk about one type of specification language called
temporal logic

/ verified

Counter-
example

N/
/

Temporal Logic

« A type of formal language for specifying behaviors of a system
* Describes desired behaviors of a system over time

« Examples:
« Robot must eventually reach its destination
 Vehicle should always maintain a safe distance to other cars
* Robot waits until the obstacle is removed from its path

The Temporal Logic of Programs
Symposium on Foundations of Computer Science (1977)
ACM Turing Award, 1996

Amir Pnueli

System Behavior as Traces

System M — qaaabbbaa . ..

» System behavior: An infinite sequence (or trace) of observations

* Observation
A state (e.g. “Robot is in shutdown mode”)
* An action (e.g. “Robot moves forward”)

« Formally, a set of atomic Boolean propositions
(e.g. {a, b} where a = “velocity of robot > 0.5 m/s” and
b = "battery is lower than 10% charged”)

Linear Temporal Logic (LTL)
QY =P ‘ q ‘ ... /[atomic propositions

1 A 2 | 1
Goi | Foi | p1Upa | O ¢1

with the following set of temporal operators
O (“next"), G (“globally”), F (“eventually”) and U (“until”).

“The robot will eventually reach its destination”
F(reachDest)

“Every request sent will eventually be served with a response”
G (request = F(response))

“Once the lecture starts, | will keep talking until it ends”
startLecture = talk U endLecture

Specification for Therac-25

Design
Model / verified
P \NOA Counter-
, Spemﬁcat.on}/ example 1

» Specification: A formal statement of what it means for the design
to be “correct’

* Q. In Therac-25, what is the specification that we want for
safety?

Safety Specification for Therac-25

ko o

Electron Mode X-Ray Mode THE PROBLEM

Low power High power High power
Wide area Narrow area Wide area

* “If the beam is in X-ray mode, it should never be fired with the shield out
of place”

Safety Specification for Therac-25

Ebeam

Out of
In place place

Xray

Confirm
Xray

Mode Setter My

Spreader Mg

Interface M;

* “If the beam is in X-ray mode, it should never be fired with the shield out of place”

* In temporal logic:
Globally (M, = BeamFired \ Mg € {XrayMode, ToEbeam} = M != OutOfPlace)

Model Checking

Design

Model verified
S ficati Counter-
pecification example

« Given a design model and a specification, the model checker will:
« Exhaustively explore all possible traces in the state machine
 Look for a trace that leads to a violation of the specification (counterexample)
* If no such trace exists, conclude that the model satisfies the specification

« There are many different algorithms and tools for model checking

Testing vs. Model Checking

[
®
®
® ®
® ®
o
@
Testing Model Checking
- Manually create test cases - No need to create tests
- Difficult to cover all corner cases - Covers all possible executions

- Cannot prove absence of bugs - If bug exists, it's guaranteed to find it

Therac-25: Putting It all together

Does the design
> satisfy the

Design model . .
) / specification?
Yes/No?

I(M, = BeamFired /\
Mg € {XrayMode, ToEbeam} A
Ms = OutOfPlace)

Specification

Therac-25: Putting It all together

Counterexample

Design model / found!

I(M, = BeamFired /\
Mg € {XrayMode, ToEbeam} A
Ms = OutOfPlace)

Specification

Counterexample

- Operator wants E-
beam, but selects X-
ray by mistake

- System Is in X-ray

w E
MO d e Confirm Confirm

Xray Ebeam

confirm confirm Mode Setter My

Ebeam

In place

Xray

Interface M,

Counterexample

Operator realizes
mistake and goes
back to the setting Editing

Confirm

Ebeam

Confirm
Xray

confirm confirm Mode Setter Mg

Ebeam

In place

Xray

Interface M,

Counterexample

- Operator selects E-
beam
- Shield is removed

Xray

eam Ebeam | Xray
Confirm Confirm
Xray Ebeam
confirm @ confirm Mode Setter My

Ready Ebeam

In place

Xray

Interface M;

Counterexample

NotSet

System is still switching
from X-ray to Ebeam

Xray

Xray

Ebeam Ebeam | Xray

Confirm
Ebeam

confirm Mode Setter My

Confirm
Xray

confirm

Ebeam

In place

Xray

Interface M;

Counterexample

- The beam is fired in X-
ray mode with shield out
- Safety violation! This
causes radiation
overdose

NotSet

Xray

Ebeam | Xray

Confirm

Ebeam

Confirm
Xray

confirm confirm Mode Setter My

Ebeam

In place

Xray

Interface M;

Summary: Model Checking

Design
Model / verified
P \NOA Counter-
Spec:lflcatlonW/ example 1

« An approach for automatically checking software design to find errors
* Input

« Design model: A formal, mathematical model of a system design

« Specification: A formal statement of what it means for the design to be “correct”
* Output

« Acounterexample that demonstrates how the system fails its specification

Industrial Application: Microsoft SLAM Project

 Device driver bugs were one of the leading causes of Windows
crashes (85% in Windows XP)

* Those bugs involve incorrect usage of the Windows API for
accessing critical OS resources

Microsoft SLAM Project

« Goal: Automatically analyze the device drivers and use model
checking to find potential bugs

« Automatically analyze the source code (in C) to extract state
machines that describe its high-level design

* Formalize safe API use rules as the correctness specification
 Highly successful; found hundreds of bugs across many device drivers

« SLAM is now distributed to driver developers as part of the Windows
Driver Foundation

« SLAM is known to be one of the most successful applications of formal
methods in industry

Model Checking: Discussion

« Model checking is a complementary approach to testing
* Unlike testing, it automatically searches all possible executions for bugs
* |t there’s a bug, it is guaranteed to find it!

« However, model checking is NOT the perfect solution to ensuring software quality
* Q. What are some limitations/challenges with model checking?

Model Checking: Discussion

« Model checking is a complementary approach to testing
* Unlike testing, it automatically searches all possible executions for bugs
* |t there’s a bug, it is guaranteed to find it!

« However, model checking is NOT the perfect solution to ensuring software quality
« Analysis is done over a model of the system design
« |If the model is inaccurate, you may miss bugs
 The model can be very large (e.g., billions of states) and take a long time
* You need to provide a formal specification of correctness
* |f the specification is incorrect, you may also miss bugs

« For some systems, it's really hard to say what “correctness” means
(Q. any examples?)

Formal Methods

* A class of techniques for ensuring software gquality

» Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

* Types of formal methods:
* Model checking
 Automated reasoning
* Interactive theorem proving

* Different methods, different levels of automation and guarantees
provided

* A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

Automated Reasoning

Universe
Reasoning
Rules engine Answer
Query

* Universe: A set of concepts (objects & relationships) that you are reasoning about
* Rules that must be followed by the concepts in the universe

* Query: A question that you'd like to ask about the universe

* Answer to the query, computed by the reasoning engine

Riddle

* Is it possible for someone to be their own grandfather?

Demo: My Own Grandpa

My Own Grandpa

Persons &
relationships

Universe
Biological & Alloy Yes/no (+
social rules example)
Rules Reasoning Answer
engine
“Can | be my
own

grandfather”?
Query

Automated Reasoning

Universe
Reasoning
Rules engine Answer
Query

« Many gquality assurance tasks in software engineering can be
formulated as a type of automated reasoning problem!

SLAM Device Driver Analyzer@Microsoft

Device
driver
SLAM
C language Model Yes/No
rules Checker (+ bug)
“Can the

driver crash?”

* Model checking itself can be formulated a type of automated reasoning
* Query: “Does there exist a system execution that violates a specification?”

Recall: Threat modeling (from security lectures)

Threat Desired property Threat Definition
Spoofing Authenticity Pretending to be something or someone other than yourself
Tampering Integrity Modifying something on disk, network, memory, or elsewhere
Repudiation Non-repudiability | Claiming that you didn't do something or were not responsible; can be honest or false
Information disclosure | Confidentiality Someone obtaining information they are not authorized to access
Denial of service Availability Exhausting resources needed to provide service
Elevation of privilege | Authorization Allowing someone to do something they are not authorized to do

AR app
Applicant status

application _ _ HTTPreq. ¢ ~ . results)
— Applicant g Admission Applicant
- Front End I Web Server | Database
P T arre DB query
| esponse [\
-

B ko i o o
- \ HTTP/ ;)
"'}C":"jp,;)s . req./ v ewlr;n ngs Q
? o Admin B TR
A < Front End |
Staff rate apps set decisions Program
' Director
: Trusted
Untrusted

Security Analysis

Component
diagram
Attacker Security Attack
Model Analyzer scenarios
“What attacks

are possible?”

« Given a component diagram specified in a machine-readable language,

the process threat modeling can be automated
« Security analyzer: Simulates every possible behavior of the attacker to

find possible attacks (if any exists)

Example: Spectre & Meltdown

SECURITY B85.14.28189 81:88 PM

Meltdown Redux: Intel Flaw Lets Hackers Siphon Secrets from
Millions of PCs

Two different groups of researchers found another speculative execution attack that can steal all the data a CPU touches.

* Found by Google researchers in 2017
« Allows a malicious program to read all J

memory [»
 Affected Intel x86, AMD, ARM, IBM

pProcessors
« Caused Intel to redesign its processors

Meltdown Spectre

Automatically Finding Spectre-like Attacks

CheckMate: Automated Synthesis of
Hardware Exploits and Security Litmus Tests

Caroline Trippel Daniel Lustig Margaret Martonosi
Princeton University NVIDIA Princeton University
ctrippel @princeton.edu dlustig@nvidia.com mrm@princeton.edu
Core0
& Al0 All A2 A3 Ald
S1§8 Address { } RVA2 (PAL:A) CF VA2 (PAL:A) R VAL (PAO:V) RVA2 (PAL:A) RVA2 (PAL:A)

L1: IDX0 L1: IDX0 L1: IDX1

Fetch ()

L1: IDX0

L1: IDXO
abstract sig Event { po: lone Event } N
abstract sig MemoryEvent extends Event { address: one Address }

sig Write extends MemoryEvent { rf : set Read, co : set Write } Execute
sig Read extends MemoryEvent { fr : set Write }

ROB
fun com : MemoryEvent->MemoryEvent { rf + fr + co }

abstract sig Location { } PC

sig Node { commit
event: one Event,
loc: one Location, L1 Create
uhb: set Node

} L1 Expire

Complete

(a) Meltdown

II%!IIIII

Automated Reasoning as Constraint Solving

Universe
Reasoning
Rules engine Answer
Constraint
ue .
Query Solving

How Is the automatic reasoning typically done?
* By solving a constraint satisfaction problem

Boolean Satisfiability Problem (SAT)

O Unknown
(—X1 V 7iX2) A (TX1 V X2 V —X3) A (X1 V X3 V TiXa) A (X1 V Xa) @ True (1)

. False (0)

=l

« A common type of constraint satisfaction problem
« All variables are propositions (O or 1), with basic Boolean operators
« Given N variables, there are 2N possible assignments

Industrial Uses of Automated Reasoning

AWS Verified Access Overview Features Pricing Partners Customers

« Networking

AWS Verified Access

Provide secure access to corporate applications without a VPN

Get started with Verified Access

Improve security posture by Deliver a seamless user experience Define a unique access policy for each
evaluating each access request in real through virtual access to corporate application, with conditions based on
time against predefined requirements. applications without a VPN. identity data and device posture.

Protect your

| Yo — applications using
% =) (o] E‘ — granular access

policies
C — -
— AWS Verified Access /

Connect to trusted Express access

Users can securely Access to corporate providers ppoli(ies

access applications applications without a VPN o

from anywhere . pse your Create per appl_lc'atlon
existing corporate granular policies _

identity and device Analyz‘e and audit
management service security events

using Verified
Access logs

A tool to detect bugs in Java and C/C++/Objective-C code
before it ships

Infer is a static analysis tool - if you give Infer some Java or C/C++/Objective-C code it produces a list of potential bugs.

Anyone can use Infer to intercept critical bugs before they have shipped to users, and help prevent crashes or poor

performance.

Objective-C, 9 |— 9 Bugs ana

Java or C code Contracts

Build System

Inside the Solver: formulating the problem

user-requested packages target prefix

Transaction() Remote variables
1 : Channels URLs Platform subdirs

Reduced index

VA

conda, resolve: generate SAT clauses
and call the SAT solver [pycosat)

. Local variables
\d 5 —b MatchSpec FackageRecord
solve_final_state() - 4 Behavior vatiables objects objects
defaults/osx-564:;

|’ -— *
numpy=1.21 numpy-1.21.2-py37hcd15c66_8

e e - : D
& 2023 Anaoonda i

Dependency Management: Anaconda (Python), apt-get (Debian),
Eclipse plugins, pkg (FreeBSD)...

Automated Reasoning: Industry Uses

* Enterprise software

 Microsoft: Finding bugs in Windows OS and device drivers
« Amazon: AWS security iIssues
* Facebook: Continuous integration (ClI) analysis

* Cryptocurrency (e.g., Ethereum)
* Verified blockchain transactions

« Hardware chip design & verification
* Apple, Intel, AMD, Samsung

« Safety-critical systems
* NASA, Airbus, Boeing

* ...and many others!

Formal Methods: Takeaways

* Formal methods is another approach to evaluating system designs
beside testing

» Techniques such as model checking and automated reasoning can
provide a much stronger level of assurance than testing
* However, these techniques are complementary, not a replacement

* They typically require (i) a formal model of the system and (ii) a
formal specification that describes the “correctness” condition

* If either one of these is wrong, then guarantees provided by these
techniques are not meaningful

« Automated reasoning is increasingly used in industry to improve QA

 Formal methods is an active area of research; there will be new,
powerful tools and techniques available

Summary

o Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3: Software Quality Assurance & Testing
	Slide 4: Testing: Limitations?
	Slide 5: Testing: Limitations?
	Slide 6: Formal Methods
	Slide 7: Formal Methods
	Slide 8: Example Domain: Medical Devices
	Slide 9: Therac-25 Radiation Therapy Machine
	Slide 10: Therac-25: Radiation Modes
	Slide 11: Therac-25: Radiation Modes
	Slide 12: Therac-25: What happened?
	Slide 13: Operator Error in Therac-25
	Slide 14: Model Checking
	Slide 15: Back to Therac-25
	Slide 16: Design as State Machines
	Slide 17: State Machine: Examples
	Slide 18: State Machine: Examples
	Slide 19: State Machine: Examples
	Slide 20: Overall Design Model for Therac-25
	Slide 21: Specification
	Slide 22: Temporal Logic
	Slide 23: System Behavior as Traces
	Slide 24: Linear Temporal Logic (LTL)
	Slide 25: Specification for Therac-25
	Slide 26: Safety Specification for Therac-25
	Slide 27: Safety Specification for Therac-25
	Slide 28: Model Checking
	Slide 29: Testing vs. Model Checking
	Slide 30: Therac-25: Putting it all together
	Slide 31: Therac-25: Putting it all together
	Slide 32: Counterexample
	Slide 33: Counterexample
	Slide 34: Counterexample
	Slide 35: Counterexample
	Slide 36: Counterexample
	Slide 37: Summary: Model Checking
	Slide 38: Industrial Application: Microsoft SLAM Project
	Slide 39: Microsoft SLAM Project
	Slide 40: Model Checking: Discussion
	Slide 41: Model Checking: Discussion
	Slide 42: Formal Methods
	Slide 43: Automated Reasoning
	Slide 44: Riddle
	Slide 45: Demo: My Own Grandpa
	Slide 46: My Own Grandpa
	Slide 47: Automated Reasoning
	Slide 48: SLAM Device Driver Analyzer@Microsoft
	Slide 49: Recall: Threat modeling (from security lectures)
	Slide 50: Security Analysis
	Slide 51: Example: Spectre & Meltdown
	Slide 52: Automatically Finding Spectre-like Attacks
	Slide 53: Automated Reasoning as Constraint Solving
	Slide 54: Boolean Satisfiability Problem (SAT)
	Slide 55: Industrial Uses of Automated Reasoning
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Automated Reasoning: Industry Uses
	Slide 60: Formal Methods: Takeaways
	Slide 61: Summary

