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Learning Goals

• Describe the limitations of testing for ensuring design quality

• Describe formal methods as an alternative approach to analyzing 
software designs

• Describe two types of formal methods: Model checking and 
automated reasoning

• Describe the potential benefits and limitations of formal methods
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Software Quality Assurance & Testing

“We have as many testers as we have 

developers. And testers spend all their 

time testing, and developers spend half 

their time testing. 

We're more of a testing, a quality 

software organization than we're a 

software organization.”

- Bill Gates
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Testing: Limitations?

Q. Based on your experience, what are some 

challenges and limitations with testing?
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Testing: Limitations?

“Testing shows the presence, 

not the absence of bugs.”

- Edsger W. Dijkstra



6

Formal Methods

• A class of techniques for ensuring software quality

• Goal: Provide strong, mathematical guarantees about the 
properties or behavior of software

• Types of formal methods:

• Model checking

• Automated reasoning 

• Interactive theorem proving

• Different methods, different levels of automation and guarantees 
provided

• A wide range of applications: Security analysis, bug finding, 
configuration analysis, program synthesis, etc., 
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Example Domain: Medical Devices

• 80,000 deaths & 1,700,000 injuries from medical devices since 2008 (in US)

• Actual numbers & root causes unclear; often unreported
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Therac-25 Radiation Therapy Machine

• Used to treat patients at multiple hospitals in US & Canada during 1980s

• One of the most infamous examples of software failures in history
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Therac-25: Radiation Modes

Low power

Wide area

High power

Narrow area

High power

Wide area

• Two different modes of operation: Electron-beam (Ebeam) and X-ray modes

• A therapist enters the patient information and mode of treatment

• In X-ray mode, a shield is inserted into the beam path to reduce treatment area
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Therac-25: Radiation Modes

Low power

Wide area

High power

Narrow area

High power

Wide area

• Failure: In certain situations, the shield was not in place during the X-ray mode

• Caused radiation overdose in some patients by up to 100 times

• Killed/seriously injured 6 patients
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Therac-25: What happened?

• Lack of robustness in software design
• Against (easily predictable) human errors

• Reckless reuse of code

• Lack of proper software engineering practices

• General lack of concerns for software safety
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Operator Error in Therac-25

“…[Therapist] noticed that for mode she had typed "x" 
(for X ray) when she had intended "e" (for electron)…the 
mistake was easy to fix; she merely used the cursor up 
key to edit the mode entry.”

An Investigation of the Therac-25 Accidents

Leveson & Turner, IEEE Computer, 1993
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• An approach for automatically checking software design to find errors

• Input
• Design model: A formal, mathematical model of a system design

• Specification: A formal statement of what it means for the design to be “correct” 

• Output
• A counterexample that demonstrates how the system fails its specification

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Model Checking
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Back to Therac-25

Low power

Wide area

High power

Narrow area

High power

Wide area

• The failure was in part caused by a race condition between the user 
interface and the beam controller

• Let’s see how model checking could have been used to find this problem
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• Design model: A formal, mathematical model of a system design

• Another common type of design model is called state machines

• Each state machine consists of states and actions

• A machine moves from one state to another state by performing an action

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Design as State Machines
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• State machine for the UI of the Therac-25 system

• Typical user task:
1. Select X-ray or electron beam
2. Confirm mode
3. Fire the beam

• An execution of the system (a trace) is captured 
as a sequence states

• There are many possible traces
• <Editing, ConfirmXray, XrayReady, BeamFired> 

• <Editing, ConfirmEbeam, EbeamReady, 
BeamFired> 

• <Editing, ConfirmXray, Up, Editing, 
ConfirmEbeam, …> 

• Q. How many traces are there?

State Machine: Examples
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• A typical system will contain multiple, 
separate state machines (for different 
components)

• This is a state machine for the beam mode 
setter

• When Xray/Ebeam command is sent from 
the UI, it changes the mode of radiation

• There’s a small delay when switching 
between the two modes (ToEbeam and 
ToXray states)

State Machine: Examples
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• State machine for the shield

• The shield is inserted when the user 
selects the X-ray mode

• The shield is taken out when the user 
requests E-beam mode

State Machine: Examples
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• The overall design model is a composition of the three state machines

• The state machines interact by performing common actions together & 
making state transitions in parallel

Overall Design Model for Therac-25
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• Specification: A formal statement of what it means for the design 
to be “correct” 

• There are many different languages for writing specifications

• We will talk about one type of specification language called 
temporal logic

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Specification
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• A type of formal language for specifying behaviors of a system

• Describes desired behaviors of a system over time

• Examples:

• Robot must eventually reach its destination

• Vehicle should always maintain a safe distance to other cars

• Robot waits until the obstacle is removed from its path

Amir Pnueli

The Temporal Logic of Programs

Symposium on Foundations of Computer Science (1977)

ACM Turing Award, 1996

Temporal Logic
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• System behavior: An infinite sequence (or trace) of observations

• Observation 

• A state (e.g. “Robot is in shutdown mode”)

• An action (e.g. “Robot moves forward”)

• Formally, a set of atomic Boolean propositions 
(e.g. {a, b} where a = “velocity of robot > 0.5 m/s” and 
                                b = “battery is lower than 10% charged”)

System Behavior as Traces
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// atomic propositions  

with the following set of temporal operators

“The robot will eventually reach its destination”

“Every request sent will eventually be served with a response”

“Once the lecture starts, I will keep talking until it ends”

Linear Temporal Logic (LTL)
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• Specification: A formal statement of what it means for the design 
to be “correct” 

• Q. In Therac-25, what is the specification that we want for 
safety?

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Specification for Therac-25
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Safety Specification for Therac-25

Low power

Wide area

High power

Narrow area

High power

Wide area

• “If the beam is in X-ray mode, it should never be fired with the shield out 
of place”
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• “If the beam is in X-ray mode, it should never be fired with the shield out of place”

• In temporal logic: 
Globally (MI = BeamFired /\ MB ∈ {XrayMode, ToEbeam} ⟹ MS != OutOfPlace)

Safety Specification for Therac-25



28

• Given a design model and a specification, the model checker will:

• Exhaustively explore all possible traces in the state machine

• Look for a trace that leads to a violation of the specification (counterexample)

• If no such trace exists, conclude that the model satisfies the specification

• There are many different algorithms and tools for model checking

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Model Checking
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Testing

- Manually create test cases

- Difficult to cover all corner cases

- Cannot prove absence of bugs

Model Checking

- No need to create tests

- Covers all possible executions

- If bug exists, it’s guaranteed to find it

Testing vs. Model Checking
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Model 

CheckerDesign model

!(MI = BeamFired /\ 

MB ∈ {XrayMode, ToEbeam} /\ 

MS = OutOfPlace)

Specification

Does the design

satisfy the 

specification?

Yes/No?

Therac-25: Putting it all together
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Model 

Checker

No

Design model

!(MI = BeamFired /\ 

MB ∈ {XrayMode, ToEbeam} /\ 

MS = OutOfPlace)

Specification

Counterexample

found!

Therac-25: Putting it all together
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- Operator wants E-

beam, but selects X-

ray by mistake

- System is in X-ray 

mode

Counterexample
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Operator realizes 

mistake and goes 

back to the setting

Counterexample
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- Operator selects E-

beam

- Shield is removed

Counterexample
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System is still switching 

from X-ray to Ebeam

Counterexample
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- The beam is fired in X-

ray mode with shield out

- Safety violation! This 

causes radiation 

overdose

Counterexample
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• An approach for automatically checking software design to find errors

• Input
• Design model: A formal, mathematical model of a system design

• Specification: A formal statement of what it means for the design to be “correct” 

• Output
• A counterexample that demonstrates how the system fails its specification

Model 

Checker

Design 

Model

Specification
Counter-

example

verified

No

Yes

Summary: Model Checking
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• Device driver bugs were one of the leading causes of Windows 
crashes (85% in Windows XP)

• Those bugs involve incorrect usage of the Windows API for 
accessing critical OS resources

Industrial Application: Microsoft SLAM Project
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• Goal: Automatically analyze the device drivers and use model 
checking to find potential bugs

• Automatically analyze the source code (in C) to extract state 
machines that describe its high-level design

• Formalize safe API use rules as the correctness specification

• Highly successful; found hundreds of bugs across many device drivers

• SLAM is now distributed to driver developers as part of the Windows 
Driver Foundation

• SLAM is known to be one of the most successful applications of formal 
methods in industry

Microsoft SLAM Project
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• Model checking is a complementary approach to testing

• Unlike testing, it automatically searches all possible executions for bugs

• It there’s a bug, it is guaranteed to find it!

• However, model checking is NOT the perfect solution to ensuring software quality

• Q. What are some limitations/challenges with model checking?

Model Checking: Discussion
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• Model checking is a complementary approach to testing

• Unlike testing, it automatically searches all possible executions for bugs

• It there’s a bug, it is guaranteed to find it!

• However, model checking is NOT the perfect solution to ensuring software quality

• Analysis is done over a model of the system design

• If the model is inaccurate, you may miss bugs

• The model can be very large (e.g., billions of states) and take a long time

• You need to provide a formal specification of correctness

• If the specification is incorrect, you may also miss bugs

• For some systems, it’s really hard to say what “correctness” means
(Q. any examples?)

Model Checking: Discussion
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Formal Methods

• A class of techniques for ensuring software quality

• Goal: Provide strong, mathematical guarantees about the 
properties or behavior of software

• Types of formal methods:

• Model checking

• Automated reasoning 

• Interactive theorem proving

• Different methods, different levels of automation and guarantees 
provided

• A wide range of applications: Security analysis, bug finding, 
configuration analysis, program synthesis, etc., 
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Reasoning 

engine

Universe

Rules Answer

Query

Automated Reasoning

• Universe: A set of concepts (objects & relationships) that you are reasoning about

• Rules that must be followed by the concepts in the universe

• Query: A question that you’d like to ask about the universe

• Answer to the query, computed by the reasoning engine
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Riddle

• Is it possible for someone to be their own grandfather?
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Demo: My Own Grandpa
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Alloy

Persons &  

relationships

Biological & 

social rules

“Can I be my 

own 

grandfather”?

Yes/no (+ 

example)

My Own Grandpa

Reasoning 

engine

Query

Rules

Universe

Answer
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Reasoning 

engine

Universe

Rules Answer

Query

Automated Reasoning

• Many quality assurance tasks in software engineering can be 
formulated as a type of automated reasoning problem!
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SLAM 

Model 

Checker

Device 

driver

C language 

rules

Yes/No 

(+ bug)

“Can the 

driver crash?”

SLAM Device Driver Analyzer@Microsoft

• Model checking itself can be formulated a type of automated reasoning

• Query: “Does there exist a system execution that violates a specification?”
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Recall: Threat modeling (from security lectures)
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Security 

Analyzer

Component 

diagram

Attacker 

Model

Attack 

scenarios

“What attacks 

are possible?”

Security Analysis

• Given a component diagram specified in a machine-readable language, 

the process threat modeling can be automated

• Security analyzer: Simulates every possible behavior of the attacker to 

find possible attacks (if any exists)
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Example: Spectre & Meltdown

• Found by Google researchers in 2017
• Allows a malicious program to read all 

memory

• Affected Intel x86, AMD, ARM, IBM 
processors

• Caused Intel to redesign its processors
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Automatically Finding Spectre-like Attacks
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Reasoning 

engine

Universe

Rules Answer

Query

Automated Reasoning as Constraint Solving

How is the automatic reasoning typically done?
• By solving a constraint satisfaction problem

Constraint 

Solving
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Boolean Satisfiability Problem (SAT)

• A common type of constraint satisfaction problem
• All variables are propositions (0 or 1), with basic Boolean operators

• Given N variables, there are 2N possible assignments
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Industrial Uses of Automated Reasoning



56



57
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Dependency Management: Anaconda (Python), apt-get (Debian), 

Eclipse plugins, pkg (FreeBSD)… 
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• Enterprise software

• Microsoft: Finding bugs in Windows OS and device drivers

• Amazon: AWS security issues

• Facebook: Continuous integration (CI) analysis

• Cryptocurrency (e.g., Ethereum)

• Verified blockchain transactions

• Hardware chip design & verification

• Apple, Intel, AMD, Samsung

• Safety-critical systems

• NASA, Airbus, Boeing

• …and many others!

Automated Reasoning: Industry Uses



60

• Formal methods is another approach to evaluating system designs 
beside testing

• Techniques such as model checking and automated reasoning can 
provide a much stronger level of assurance than testing

• However, these techniques are complementary, not a replacement

• They typically require (i) a formal model of the system and (ii) a 
formal specification that describes the “correctness” condition

• If either one of these is wrong, then guarantees provided by these 
techniques are not meaningful

• Automated reasoning is increasingly used in industry to improve QA

• Formal methods is an active area of research; there will be new, 
powerful tools and techniques available

Formal Methods: Takeaways
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Summary

• Exit ticket!
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