
17-423/723:
Designing Large-scale
Software Systems

Automated Design Analysis
April 9, 2025

2

Learning Goals

• Describe the limitations of testing for ensuring design quality

• Describe formal methods as an alternative approach to analyzing
software designs

• Describe two types of formal methods: Model checking and
automated reasoning

• Describe the potential benefits and limitations of formal methods

3

Software Quality Assurance & Testing

“We have as many testers as we have

developers. And testers spend all their

time testing, and developers spend half

their time testing.

We're more of a testing, a quality

software organization than we're a

software organization.”

- Bill Gates

4

Testing: Limitations?

Q. Based on your experience, what are some

challenges and limitations with testing?

5

Testing: Limitations?

“Testing shows the presence,

not the absence of bugs.”

- Edsger W. Dijkstra

6

Formal Methods

• A class of techniques for ensuring software quality

• Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

• Types of formal methods:

• Model checking

• Automated reasoning

• Interactive theorem proving

• Different methods, different levels of automation and guarantees
provided

• A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

7

Formal Methods

• A class of techniques for ensuring software quality

• Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

• Types of formal methods:

• Model checking

• Automated reasoning

• Interactive theorem proving

• Different methods, different levels of automation and guarantees
provided

• A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

8

Example Domain: Medical Devices

• 80,000 deaths & 1,700,000 injuries from medical devices since 2008 (in US)

• Actual numbers & root causes unclear; often unreported

9

Therac-25 Radiation Therapy Machine

• Used to treat patients at multiple hospitals in US & Canada during 1980s

• One of the most infamous examples of software failures in history

10

Therac-25: Radiation Modes

Low power

Wide area

High power

Narrow area

High power

Wide area

• Two different modes of operation: Electron-beam (Ebeam) and X-ray modes

• A therapist enters the patient information and mode of treatment

• In X-ray mode, a shield is inserted into the beam path to reduce treatment area

11

Therac-25: Radiation Modes

Low power

Wide area

High power

Narrow area

High power

Wide area

• Failure: In certain situations, the shield was not in place during the X-ray mode

• Caused radiation overdose in some patients by up to 100 times

• Killed/seriously injured 6 patients

12

Therac-25: What happened?

• Lack of robustness in software design
• Against (easily predictable) human errors

• Reckless reuse of code

• Lack of proper software engineering practices

• General lack of concerns for software safety

13

Operator Error in Therac-25

“…[Therapist] noticed that for mode she had typed "x"
(for X ray) when she had intended "e" (for electron)…the
mistake was easy to fix; she merely used the cursor up
key to edit the mode entry.”

An Investigation of the Therac-25 Accidents

Leveson & Turner, IEEE Computer, 1993

14

• An approach for automatically checking software design to find errors

• Input
• Design model: A formal, mathematical model of a system design

• Specification: A formal statement of what it means for the design to be “correct”

• Output
• A counterexample that demonstrates how the system fails its specification

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Model Checking

15

Back to Therac-25

Low power

Wide area

High power

Narrow area

High power

Wide area

• The failure was in part caused by a race condition between the user
interface and the beam controller

• Let’s see how model checking could have been used to find this problem

16

• Design model: A formal, mathematical model of a system design

• Another common type of design model is called state machines

• Each state machine consists of states and actions

• A machine moves from one state to another state by performing an action

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Design as State Machines

17

• State machine for the UI of the Therac-25 system

• Typical user task:
1. Select X-ray or electron beam
2. Confirm mode
3. Fire the beam

• An execution of the system (a trace) is captured
as a sequence states

• There are many possible traces
• <Editing, ConfirmXray, XrayReady, BeamFired>

• <Editing, ConfirmEbeam, EbeamReady,
BeamFired>

• <Editing, ConfirmXray, Up, Editing,
ConfirmEbeam, …>

• Q. How many traces are there?

State Machine: Examples

18

• A typical system will contain multiple,
separate state machines (for different
components)

• This is a state machine for the beam mode
setter

• When Xray/Ebeam command is sent from
the UI, it changes the mode of radiation

• There’s a small delay when switching
between the two modes (ToEbeam and
ToXray states)

State Machine: Examples

19

• State machine for the shield

• The shield is inserted when the user
selects the X-ray mode

• The shield is taken out when the user
requests E-beam mode

State Machine: Examples

20

• The overall design model is a composition of the three state machines

• The state machines interact by performing common actions together &
making state transitions in parallel

Overall Design Model for Therac-25

21

• Specification: A formal statement of what it means for the design
to be “correct”

• There are many different languages for writing specifications

• We will talk about one type of specification language called
temporal logic

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Specification

22

• A type of formal language for specifying behaviors of a system

• Describes desired behaviors of a system over time

• Examples:

• Robot must eventually reach its destination

• Vehicle should always maintain a safe distance to other cars

• Robot waits until the obstacle is removed from its path

Amir Pnueli

The Temporal Logic of Programs

Symposium on Foundations of Computer Science (1977)

ACM Turing Award, 1996

Temporal Logic

23

• System behavior: An infinite sequence (or trace) of observations

• Observation

• A state (e.g. “Robot is in shutdown mode”)

• An action (e.g. “Robot moves forward”)

• Formally, a set of atomic Boolean propositions
(e.g. {a, b} where a = “velocity of robot > 0.5 m/s” and
 b = “battery is lower than 10% charged”)

System Behavior as Traces

24

// atomic propositions

with the following set of temporal operators

“The robot will eventually reach its destination”

“Every request sent will eventually be served with a response”

“Once the lecture starts, I will keep talking until it ends”

Linear Temporal Logic (LTL)

25

• Specification: A formal statement of what it means for the design
to be “correct”

• Q. In Therac-25, what is the specification that we want for
safety?

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Specification for Therac-25

26

Safety Specification for Therac-25

Low power

Wide area

High power

Narrow area

High power

Wide area

• “If the beam is in X-ray mode, it should never be fired with the shield out
of place”

27

• “If the beam is in X-ray mode, it should never be fired with the shield out of place”

• In temporal logic:
Globally (MI = BeamFired /\ MB ∈ {XrayMode, ToEbeam} ⟹ MS != OutOfPlace)

Safety Specification for Therac-25

28

• Given a design model and a specification, the model checker will:

• Exhaustively explore all possible traces in the state machine

• Look for a trace that leads to a violation of the specification (counterexample)

• If no such trace exists, conclude that the model satisfies the specification

• There are many different algorithms and tools for model checking

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Model Checking

29

Testing

- Manually create test cases

- Difficult to cover all corner cases

- Cannot prove absence of bugs

Model Checking

- No need to create tests

- Covers all possible executions

- If bug exists, it’s guaranteed to find it

Testing vs. Model Checking

30

Model

CheckerDesign model

!(MI = BeamFired /\

MB ∈ {XrayMode, ToEbeam} /\

MS = OutOfPlace)

Specification

Does the design

satisfy the

specification?

Yes/No?

Therac-25: Putting it all together

31

Model

Checker

No

Design model

!(MI = BeamFired /\

MB ∈ {XrayMode, ToEbeam} /\

MS = OutOfPlace)

Specification

Counterexample

found!

Therac-25: Putting it all together

32

- Operator wants E-

beam, but selects X-

ray by mistake

- System is in X-ray

mode

Counterexample

33

Operator realizes

mistake and goes

back to the setting

Counterexample

34

- Operator selects E-

beam

- Shield is removed

Counterexample

35

System is still switching

from X-ray to Ebeam

Counterexample

36

- The beam is fired in X-

ray mode with shield out

- Safety violation! This

causes radiation

overdose

Counterexample

37

• An approach for automatically checking software design to find errors

• Input
• Design model: A formal, mathematical model of a system design

• Specification: A formal statement of what it means for the design to be “correct”

• Output
• A counterexample that demonstrates how the system fails its specification

Model

Checker

Design

Model

Specification
Counter-

example

verified

No

Yes

Summary: Model Checking

38

• Device driver bugs were one of the leading causes of Windows
crashes (85% in Windows XP)

• Those bugs involve incorrect usage of the Windows API for
accessing critical OS resources

Industrial Application: Microsoft SLAM Project

39

• Goal: Automatically analyze the device drivers and use model
checking to find potential bugs

• Automatically analyze the source code (in C) to extract state
machines that describe its high-level design

• Formalize safe API use rules as the correctness specification

• Highly successful; found hundreds of bugs across many device drivers

• SLAM is now distributed to driver developers as part of the Windows
Driver Foundation

• SLAM is known to be one of the most successful applications of formal
methods in industry

Microsoft SLAM Project

40

• Model checking is a complementary approach to testing

• Unlike testing, it automatically searches all possible executions for bugs

• It there’s a bug, it is guaranteed to find it!

• However, model checking is NOT the perfect solution to ensuring software quality

• Q. What are some limitations/challenges with model checking?

Model Checking: Discussion

41

• Model checking is a complementary approach to testing

• Unlike testing, it automatically searches all possible executions for bugs

• It there’s a bug, it is guaranteed to find it!

• However, model checking is NOT the perfect solution to ensuring software quality

• Analysis is done over a model of the system design

• If the model is inaccurate, you may miss bugs

• The model can be very large (e.g., billions of states) and take a long time

• You need to provide a formal specification of correctness

• If the specification is incorrect, you may also miss bugs

• For some systems, it’s really hard to say what “correctness” means
(Q. any examples?)

Model Checking: Discussion

42

Formal Methods

• A class of techniques for ensuring software quality

• Goal: Provide strong, mathematical guarantees about the
properties or behavior of software

• Types of formal methods:

• Model checking

• Automated reasoning

• Interactive theorem proving

• Different methods, different levels of automation and guarantees
provided

• A wide range of applications: Security analysis, bug finding,
configuration analysis, program synthesis, etc.,

43

Reasoning

engine

Universe

Rules Answer

Query

Automated Reasoning

• Universe: A set of concepts (objects & relationships) that you are reasoning about

• Rules that must be followed by the concepts in the universe

• Query: A question that you’d like to ask about the universe

• Answer to the query, computed by the reasoning engine

44

Riddle

• Is it possible for someone to be their own grandfather?

45

Demo: My Own Grandpa

46

Alloy

Persons &

relationships

Biological &

social rules

“Can I be my

own

grandfather”?

Yes/no (+

example)

My Own Grandpa

Reasoning

engine

Query

Rules

Universe

Answer

47

Reasoning

engine

Universe

Rules Answer

Query

Automated Reasoning

• Many quality assurance tasks in software engineering can be
formulated as a type of automated reasoning problem!

48

SLAM

Model

Checker

Device

driver

C language

rules

Yes/No

(+ bug)

“Can the

driver crash?”

SLAM Device Driver Analyzer@Microsoft

• Model checking itself can be formulated a type of automated reasoning

• Query: “Does there exist a system execution that violates a specification?”

49

Recall: Threat modeling (from security lectures)

50

Security

Analyzer

Component

diagram

Attacker

Model

Attack

scenarios

“What attacks

are possible?”

Security Analysis

• Given a component diagram specified in a machine-readable language,

the process threat modeling can be automated

• Security analyzer: Simulates every possible behavior of the attacker to

find possible attacks (if any exists)

51

Example: Spectre & Meltdown

• Found by Google researchers in 2017
• Allows a malicious program to read all

memory

• Affected Intel x86, AMD, ARM, IBM
processors

• Caused Intel to redesign its processors

52

Automatically Finding Spectre-like Attacks

53

Reasoning

engine

Universe

Rules Answer

Query

Automated Reasoning as Constraint Solving

How is the automatic reasoning typically done?
• By solving a constraint satisfaction problem

Constraint

Solving

54

Boolean Satisfiability Problem (SAT)

• A common type of constraint satisfaction problem
• All variables are propositions (0 or 1), with basic Boolean operators

• Given N variables, there are 2N possible assignments

55

Industrial Uses of Automated Reasoning

56

57

58

Dependency Management: Anaconda (Python), apt-get (Debian),

Eclipse plugins, pkg (FreeBSD)…

59

• Enterprise software

• Microsoft: Finding bugs in Windows OS and device drivers

• Amazon: AWS security issues

• Facebook: Continuous integration (CI) analysis

• Cryptocurrency (e.g., Ethereum)

• Verified blockchain transactions

• Hardware chip design & verification

• Apple, Intel, AMD, Samsung

• Safety-critical systems

• NASA, Airbus, Boeing

• …and many others!

Automated Reasoning: Industry Uses

60

• Formal methods is another approach to evaluating system designs
beside testing

• Techniques such as model checking and automated reasoning can
provide a much stronger level of assurance than testing

• However, these techniques are complementary, not a replacement

• They typically require (i) a formal model of the system and (ii) a
formal specification that describes the “correctness” condition

• If either one of these is wrong, then guarantees provided by these
techniques are not meaningful

• Automated reasoning is increasingly used in industry to improve QA

• Formal methods is an active area of research; there will be new,
powerful tools and techniques available

Formal Methods: Takeaways

61

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3: Software Quality Assurance & Testing
	Slide 4: Testing: Limitations?
	Slide 5: Testing: Limitations?
	Slide 6: Formal Methods
	Slide 7: Formal Methods
	Slide 8: Example Domain: Medical Devices
	Slide 9: Therac-25 Radiation Therapy Machine
	Slide 10: Therac-25: Radiation Modes
	Slide 11: Therac-25: Radiation Modes
	Slide 12: Therac-25: What happened?
	Slide 13: Operator Error in Therac-25
	Slide 14: Model Checking
	Slide 15: Back to Therac-25
	Slide 16: Design as State Machines
	Slide 17: State Machine: Examples
	Slide 18: State Machine: Examples
	Slide 19: State Machine: Examples
	Slide 20: Overall Design Model for Therac-25
	Slide 21: Specification
	Slide 22: Temporal Logic
	Slide 23: System Behavior as Traces
	Slide 24: Linear Temporal Logic (LTL)
	Slide 25: Specification for Therac-25
	Slide 26: Safety Specification for Therac-25
	Slide 27: Safety Specification for Therac-25
	Slide 28: Model Checking
	Slide 29: Testing vs. Model Checking
	Slide 30: Therac-25: Putting it all together
	Slide 31: Therac-25: Putting it all together
	Slide 32: Counterexample
	Slide 33: Counterexample
	Slide 34: Counterexample
	Slide 35: Counterexample
	Slide 36: Counterexample
	Slide 37: Summary: Model Checking
	Slide 38: Industrial Application: Microsoft SLAM Project
	Slide 39: Microsoft SLAM Project
	Slide 40: Model Checking: Discussion
	Slide 41: Model Checking: Discussion
	Slide 42: Formal Methods
	Slide 43: Automated Reasoning
	Slide 44: Riddle
	Slide 45: Demo: My Own Grandpa
	Slide 46: My Own Grandpa
	Slide 47: Automated Reasoning
	Slide 48: SLAM Device Driver Analyzer@Microsoft
	Slide 49: Recall: Threat modeling (from security lectures)
	Slide 50: Security Analysis
	Slide 51: Example: Spectre & Meltdown
	Slide 52: Automatically Finding Spectre-like Attacks
	Slide 53: Automated Reasoning as Constraint Solving
	Slide 54: Boolean Satisfiability Problem (SAT)
	Slide 55: Industrial Uses of Automated Reasoning
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Automated Reasoning: Industry Uses
	Slide 60: Formal Methods: Takeaways
	Slide 61: Summary

