
17-423/723:
Designing Large-scale
Software Systems

Course Review
April 21, 2025

2

Learning Goals

• Describe and apply key foundational concepts in software
design

• Apply principles, techniques, and tools to design software
systems for various types of quality attributes

• Reflect on the role of design in the future of software
developments

3

Project Presentation

• 15 min max. + 3 min Q&A

• We will be strict about the time limit!

• See the project presentation guidelines for more detail

• Every team member must be present

4

Final Exam

• May 1 (Thursday), 5:30-8:30 pm in GHC 4215

• Covers everything in the class

• Similar to the midterm in structure

• Open book, but no electronics

• Sample exam from last year posted

• Note: Different from this year’s materials!

• Will go through in this week’s recitation

5

Course Roadmap

Foundational techniques and tools for design
Problem vs. solution space, domain & design modeling,
quality attributes & trade-offs, interface specifications,
design review

Designing for quality attributes
Design for change, testability, reuse, interoperability,
scalability, robustness, security, AI, ethics

6

Problem vs. Solution Space

7

Problem vs. Solution Space

• Software (solution space) is one part of the system, and have limited control

over the rest of the world (problem space)

• Domain assumptions are just as critical in achieving requirements

• If you ignore/misunderstand these, your system may fail or do poorly (no

matter how well-designed your software is)

• Identifying relevant parts of the world & assumptions is the 1st step to design

8

Design Abstractions

• Code is a poor way to convey design
decisions

• Different abstractions (notations) are
good at capturing different aspects of
a design

• Context models, component diagrams,
data models, sequence diagrams

• Be precise & consistent with the
meaning and use of a notation

• The goal is communication, not
completeness; focus on design
aspects that are most important

9

Quality Attributes (QAs)

• Functionality is just one aspect
of software

• QAs are often keys to making
your product successful

• QAs should be specified in a
way that is measurable and
describe a scenario that your
system handles

• QAs often conflict with each
other! Consider trade-offs and
prioritize for ones that are most
important

10

Arguing why your design works

• You must be able to provide a sound argument (with evidence) that
your design achieves intended functionality & QAs
• If you can’t come up with an argument, how do you know it works?

• Assurance case is one way to structure your arguments
• Apply adversarial thinking to find weaknesses and improve your

argument

11

Interface Specifications

satisfies precondition

satisfies postcondition

• Contract between a client and a
component

• Pre-condition

• What the component expects from
the client, expressed as a
condition over the function
input/component state

• Post-condition

• What the component promises to
deliver, as a condition over the
function output/component state

• Pre-condition ⇒ Post-condition
(i.e., logical implication)

12

Course Roadmap

Foundational techniques and tools for design
Problem vs. solution space, domain & design modeling,
quality attributes & trade-offs, interface specifications,
design review

Designing for quality attributes
Design for change, testability, reuse, interoperability,
scalability, robustness, security, AI, ethics

13

Design for Change

• Changeability: The amount of effort involved in making a particular
change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: ??

14

Design for Change

• Changeability: The amount of effort involved in making a particular
change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: Hide secrets that are likely to change behind a
component interface

15

Design for Change: SOLID Principles

• Single responsibility: ??
• Interface segregation: ??
• Dependency inversion principle: ??

16

Design for Change: SOLID Principles

• Single responsibility: Each
component should be responsible for
fulfilling a single purpose

• Interface segregation: An interface
should not force its clients to depend
on unnecessary details

• Dependency inversion principle:
“High-level”, application-logic
component should not depend on
“low-level”, general-purpose
components

• Don’t over-modularize! Consider (1) likely changes and (2)
whether the flexibility to adapt to those changes is worth the cost

17

Design for Testability

• Controllability: How easy is it to bring a program to a particular
state and/or inject it with a specific set of inputs?

• Observability: How easy is it to observe the behavior of a program,
in terms of its outputs, quality attributes, or effects on its state?

• Dependencies can make testing difficult by reducing these two

Indirect Outputs

Indirect Inputs

Depended-on

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component

Under Test

(CUT)

18

Design for Testability: Dependency Injection

• Dependency injection:
• A component receives one or

more components that it
depends on

• Dependencies are created and
“injected” into the component by
an external entity (i.e., client),
instead of being created
internally

• Improves controllability by
separating the logic of creating
dependencies

• Q. Any potential downsides to
dependency injection?

High-level

Component

(HC)

Low-level

Component

(LC)

implements

Service

Interface

X

Dependency

Injector

injects LC

instantiates

19

Design by Contract (DbC)

• Check that a component and its
client fulfill their contract by
using assertions

• At the beginning of a function,
to check pre-conditions

• At the end of a function, to
check post-conditions

satisfies precondition

satisfies postcondition

20

public class Basket {

 private double totalValue = 0;

 private Map<Product, Integer> basket = new HashMap<>();

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 public void add(Product product, int qtyToAdd) {

 // check the post-condition holds on the exit

 assert product != null : “Product cannot be null”;

 assert qtyToAdd > 0 : “Cannot add 0 quantity”;

 // add the product

 // update the total value

 ...

 // check the post-condition holds on the exit

 assert basket.containsKey(product) :

 “Failed to add the product to the basket ;

 }

}

Assert that the pre-

condition holds

Assert that the post-

condition holds

21

Design by Contract (DbC)

• Check that a component and its
client fulfill their contract by
using assertions

• At the beginning of a function,
to check pre-conditions

• At the end of a function, to
check post-conditions

• Invariant: Condition that must
hold throughout execution

• Check in the initial state

• Check after each function that
modifies the system state

satisfies precondition

satisfies postcondition

22

public class Basket {

 private double totalValue;

 private Map<Product, Integer> basket = new HashMap<>();

 // invariant: totalValue is never negative

 // constructor

 public Basket() {

 // initialize the component state

 totalValue = 0;

 basket = new HashMap<>();

 // check that the component has been properly constructed

 // i.e., it satisfies the invariant

 totalValue >= 0;

 }

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 public void add(Product product, int qtyToAdd) {

 // add the product

 // update the total value

 ...

 // check that the method preserves the invariant

 totalValue >= 0;

 }

}

Check that invariant

holds in initial state

Check that invariant

holds in the post-state

Invariant documentation

23

Design by Contract (DbC)

• Check that a component and its
client fulfill their contract by
using assertions

• At the beginning of a function,
to check pre-conditions

• At the end of a function, to
check post-conditions

• Invariant: Condition that must
hold throughout execution

• Check in the initial state
• Check after each function that

modifies the system state

• Q. How is this different from
testing?

satisfies precondition

satisfies postcondition

24

Contract Testing

• An incremental, service-by-service
approach to integration testing

• Provider: Provides data to consumers

• Consumer: Processes data obtained
from a provider

• Consumer-driven Contract (CDC):
Describes what the consumer expects
from the provider as an output

• Allows services to be tested without
having to run all of them

• When a provider changes, contracts can
be used as regression tests, to detect
whether the change affects its
consumers

25

Design for Interoperability

• Syntactic interoperability: Multiple
systems exchange data over a shared
format & a protocol

• Semantic interoperability: Multiple
systems exchange and assign a common
interpretation to data

• An ontology defines concepts, their
relationships, and constraints in an
application area of interest

• Design to support backward
compatibility

Mars Climate Orbiter

26

Design for Scalability

• Scalability: Ability to handle growth
in the amount of workload while
maintaining an acceptable level of
performance

• Design decisions: Data model (to
store data), vertical vs. horizontal
scaling (increase overall capacity),
load balancing (distribute work
across machines), caching (reduce
bottlenecks)

• In general, correctly designing a
distributed system is really hard
(recall: CAP theorem)

27

Design for Scalability

• “Right” decisions for scalability depend highly on patterns of
workload
• And you won’t find these out until after you’ve deployed your system

• Delay investing in scalability until it’s necessary!

https://martinfowler.com/bliki/MonolithFirst.html

https://martinfowler.com/bliki/MonolithFirst.html

28

Design for Robustness

• Robustness: Ability to provide
an acceptable level of
service even when it operates
under abnormal conditions

• Many past accidents in
software are due to lack of
robustness against human
errors or unexpected faults in
the environment

• No system will ever be
“correct”: Be ready for things
going wrong!

29

Design for Robustness

• Identify possible faults using fault tree analysis & HAZOP
• Apply robustness patterns: Guardrails, redundancy,

separation, graceful degradation, human in the loop,
undoable action

30

Chaos Testing

• Evaluate robustness realistic failures
• Create a hypothesis about system

behavior under a failure
• Designate parts of the system as

control vs. experimental groups

• Inject a failure into the experimental
group

• Measure and compare a desired
metric across groups

• Improve the design to deal with the
failure

• Encourages developers to deliberately
design the system to be ready for
failures!

31

Design for Security

• Confidentiality, Integrity, Availability (“CIA”) requirements

• Threat modeling: Estimate an attacker’s possible actions

• STRIDE: A systematic approach to identify possible threats

• Principles: Least privileges, open design, reduce trusted
computing base (TCB), don’t invent your own security methods

32

Design for Usability

• Mental model: A person’s understanding of how system works
• Mental model mismatch can cause confusion, increase user’s effort

and errors, lead to accidents…
• Design for alignment: Don’t invent a new UI unless necessary

• Identify user’s mental model through similar apps or usability testing
• Help users adapt their model through onboarding & transparency

33

Design for AI-Enabled Systems

• Special design considerations
are needed, especially for data
curation, training, and model
monitoring

• Accuracy is not the only
important quality of an ML
model!

• Ultimately, ML models are just
one type of components within a
larger software system; design
principles & methods from other
lectures still apply!

34

Ethical and Responsible Design

• Software engineers have power
to influence users, environment,
and ultimately the society

• Identify different groups of
users who may be affected

• Think of possible harms that
can be caused by software

• Deliberately design the product
to minimize harms

• Consider: Should I build this
feature if potential harm is high?

35

Ethical and Responsible Design

• Software engineers have power
to influence users, environment,
and ultimately the society

• Identify different groups of
users who may be affected

• Think of possible harms that
can be caused by software

• Deliberately design the product
to minimize harms

• Consider: Should I build this
feature if potential harm is high?

36

Reflections on Design

37

Is Design Worth Doing?

• Q1. What are some benefits of
doing an explicit design before
writing code?

• Q2. What makes designing
software particularly challenging?

• Q3. Designing a perfect system is
difficult/impossible, so what’s the
point anyway?

38

Viewpoint: Design as Uncertainty Reduction

• Many forms of uncertainty in software
• Will users like our product? Will it be usable? Will it run fast enough?

Will it be secure against attacks x, y, z? …

• Explicit design enables early prototyping & evaluation

• Can identify & rule out bad designs early on

• (This can be done in both waterfall & agile methods!)

• Explicit design enables better management of technical debt

• Cost of additional rework caused by choosing an early (limited) solution

• E.g., “We will just add encryption later to make the system secure”

• The goal is not to design the perfect product upfront, but to reduce
the amount of cost possibly incurred later in the product cycle

39

“The designers usually find themselves floundering in a sea of

possibilities, unclear about how one choice will limit their

freedom to make other choices...

There probably isn’t a ‘best’ way to build it, or even any major

part of it; what’s important is to avoid a terrible way, and to

have clear division of responsibilities among the parts.”

Butler Lampson

Hints for Computer Systems Design

40

Viewpoint #2: Design as Resiliency Building

• Resiliency: Ability of a person or a system to tolerate external
disturbances and bounce back

• Resiliency in system

• Changeability, scalability, robustness, security – these are about
dealing with different types of disturbances to the system

• If you don’t design resiliency into the system, unlikely that this property
will “emerge” by itself

• Resiliency in designer

• By studying & evaluating alternative designs, the designer will develop
an in-depth understanding of the problem & solution spaces

• This knowledge is crucial for maintaining & evolving the system as
requirements inevitably change over time

• (Product trouble often begins when this person leaves the project!)

41

Perspective: Design as Problem Solving

• Design is a systematic, rational process
• A description of a problem space &

constraints (i.e., assumptions) is given

• Designer makes a sequence of design
decisions

• Each candidate solution is evaluated until a
satisfactory design is found

• Simon hinted that one day, this process
could be automated by computers

42

Perspective: Design as Problem Setting

• Design is a conversation between the
problem space & the designer

• Simon’s model is flawed; designers don’t
actually work like this in practice

• As the designer explores possible
solutions, they learn more about the
problem itself

• Outcome of design is both the product &
also an increased understanding of the
problem space

• This is unlikely to be fully automatable by
computers

43

Simon vs. Scholn

• Q. Which one do you think is the “right” model of the design?

44

Future of Software Engineering?

• Q1. Will AI/LLMs replace software engineers in the future?

• Q2. Will software become more reliable and correct because of AI?

45

Closing Thoughts

• There will always be new technologies that push the level of
abstraction higher (better LLMs, higher-level languages, etc.,)

• But design principles and methods from this class have existed
for a long time and will continue to be relevant

• None of these methods, out-of-the-box, will guarantee that your
product will be successful

• Human judgement is still needed to decide when it makes
sense to apply a certain principle/method

• But being deliberate about design, considering alternative
options, and communicating them effectively will help you
become a successful software engineer

46

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Learning Goals
	Slide 3: Project Presentation
	Slide 4: Final Exam
	Slide 5: Course Roadmap
	Slide 6: Problem vs. Solution Space
	Slide 7: Problem vs. Solution Space
	Slide 8: Design Abstractions
	Slide 9: Quality Attributes (QAs)
	Slide 10: Arguing why your design works
	Slide 11: Interface Specifications
	Slide 12: Course Roadmap
	Slide 13: Design for Change
	Slide 14: Design for Change
	Slide 15: Design for Change: SOLID Principles
	Slide 16: Design for Change: SOLID Principles
	Slide 17: Design for Testability
	Slide 18: Design for Testability: Dependency Injection
	Slide 19: Design by Contract (DbC)
	Slide 20
	Slide 21: Design by Contract (DbC)
	Slide 22
	Slide 23: Design by Contract (DbC)
	Slide 24: Contract Testing
	Slide 25: Design for Interoperability
	Slide 26: Design for Scalability
	Slide 27: Design for Scalability
	Slide 28: Design for Robustness
	Slide 29: Design for Robustness
	Slide 30: Chaos Testing
	Slide 31: Design for Security
	Slide 32: Design for Usability
	Slide 33: Design for AI-Enabled Systems
	Slide 34: Ethical and Responsible Design
	Slide 35: Ethical and Responsible Design
	Slide 36
	Slide 37: Is Design Worth Doing?
	Slide 38: Viewpoint: Design as Uncertainty Reduction
	Slide 39
	Slide 40: Viewpoint #2: Design as Resiliency Building
	Slide 41: Perspective: Design as Problem Solving
	Slide 42: Perspective: Design as Problem Setting
	Slide 43: Simon vs. Scholn
	Slide 44: Future of Software Engineering?
	Slide 45: Closing Thoughts
	Slide 46: Summary

