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Learning Goals

• Describe and apply key foundational concepts in software 
design

• Apply principles, techniques, and tools to design software 
systems for various types of quality attributes

• Reflect on the role of design in the future of software 
developments
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Project Presentation

• 15 min max. + 3 min Q&A 

• We will be strict about the time limit!

• See the project presentation guidelines for more detail

• Every team member must be present
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Final Exam

• May 1 (Thursday), 5:30-8:30 pm in GHC 4215

• Covers everything in the class

• Similar to the midterm in structure

• Open book, but no electronics 

• Sample exam from last year posted

• Note: Different from this year’s materials!

• Will go through in this week’s recitation
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Course Roadmap

Foundational techniques and tools for design
Problem vs. solution space, domain & design modeling, 
quality attributes & trade-offs, interface specifications, 
design review

Designing for quality attributes
Design for change, testability, reuse, interoperability, 
scalability, robustness, security, AI, ethics
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Problem vs. Solution Space



7

Problem vs. Solution Space

• Software (solution space) is one part of the system, and have limited control 

over the rest of the world (problem space)

• Domain assumptions are just as critical in achieving requirements

• If you ignore/misunderstand these, your system may fail or do poorly (no 

matter how well-designed your software is)

• Identifying relevant parts of the world & assumptions is the 1st step to design
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Design Abstractions

• Code is a poor way to convey design 
decisions

• Different abstractions (notations) are 
good at capturing different aspects of 
a design

• Context models, component diagrams, 
data models, sequence diagrams

• Be precise & consistent with the 
meaning and use of a notation

• The goal is communication, not 
completeness; focus on design 
aspects that are most important 
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Quality Attributes (QAs)

• Functionality is just one aspect 
of software 

• QAs are often keys to making 
your product successful

• QAs should be specified in a 
way that is measurable and 
describe a scenario that your 
system handles

• QAs often conflict with each 
other! Consider trade-offs and 
prioritize for ones that are most 
important
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Arguing why your design works

• You must be able to provide a sound argument (with evidence) that 
your design achieves intended functionality & QAs
• If you can’t come up with an argument, how do you know it works?

• Assurance case is one way to structure your arguments
• Apply adversarial thinking to find weaknesses and improve your 

argument
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Interface Specifications

satisfies precondition

satisfies postcondition

• Contract between a client and a 
component

• Pre-condition

• What the component expects from 
the client, expressed as a 
condition over the function 
input/component state

• Post-condition

• What the component promises to 
deliver, as a condition over the 
function output/component state

• Pre-condition ⇒ Post-condition 
(i.e., logical implication)



12

Course Roadmap

Foundational techniques and tools for design
Problem vs. solution space, domain & design modeling, 
quality attributes & trade-offs, interface specifications, 
design review
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Design for Change

• Changeability: The amount of effort involved in making a particular 
change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: ??
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Design for Change

• Changeability: The amount of effort involved in making a particular 
change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: Hide secrets that are likely to change behind a 
component interface 
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Design for Change: SOLID Principles

• Single responsibility: ??
• Interface segregation: ??
• Dependency inversion principle: ??
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Design for Change: SOLID Principles

• Single responsibility: Each 
component should be responsible for 
fulfilling a single purpose

• Interface segregation: An interface 
should not force its clients to depend 
on unnecessary details

• Dependency inversion principle: 
“High-level”, application-logic 
component should not depend on 
“low-level”, general-purpose 
components

• Don’t over-modularize! Consider (1) likely changes and (2) 
whether the flexibility to adapt to those changes is worth the cost
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Design for Testability

• Controllability: How easy is it to bring a program to a particular 
state and/or inject it with a specific set of inputs?

• Observability: How easy is it to observe the behavior of a program, 
in terms of its outputs, quality attributes, or effects on its state?

• Dependencies can make testing difficult by reducing these two

Indirect Outputs

Indirect Inputs

Depended-on 

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component 

Under Test

(CUT)
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Design for Testability: Dependency Injection

• Dependency injection:
• A component receives one or 

more components that it 
depends on

• Dependencies are created and 
“injected” into the component by 
an external entity (i.e., client), 
instead of being created 
internally

• Improves controllability by 
separating the logic of creating 
dependencies

• Q. Any potential downsides to 
dependency injection?

High-level 

Component

(HC)

Low-level 

Component

(LC)

implements

Service 

Interface

X

Dependency 

Injector

injects LC

instantiates
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Design by Contract (DbC)

• Check that a component and its 
client fulfill their contract by 
using assertions

• At the beginning of a function, 
to check pre-conditions

• At the end of a function, to 
check post-conditions

satisfies precondition

satisfies postcondition
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public class Basket {

  private double totalValue = 0; 

  private Map<Product, Integer> basket = new HashMap<>();

 

  // requires: product is not null; quantity is greater than 0 

  // effects: product is added to the basket

  public void add(Product product, int qtyToAdd) {       

   // check the post-condition holds on the exit

    assert product != null : “Product cannot be null”;

    assert qtyToAdd > 0 : “Cannot add 0 quantity”;

    // add the product

    // update the total value

    ...

    // check the post-condition holds on the exit

    assert basket.containsKey(product) : 

           “Failed to add the product to the basket ;

  }

}

Assert that the pre-

condition holds

Assert that the post-

condition holds
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Design by Contract (DbC)

• Check that a component and its 
client fulfill their contract by 
using assertions

• At the beginning of a function, 
to check pre-conditions

• At the end of a function, to 
check post-conditions

• Invariant: Condition that must 
hold throughout execution

• Check in the initial state

• Check after each function that 
modifies the system state

satisfies precondition

satisfies postcondition
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public class Basket {

  private double totalValue; 

  private Map<Product, Integer> basket = new HashMap<>();

  // invariant: totalValue is never negative

  // constructor

  public Basket() {

    // initialize the component state

    totalValue = 0;

    basket = new HashMap<>();

    // check that the component has been properly constructed

   // i.e., it satisfies the invariant

    totalValue >= 0;

  }

  // requires: product is not null; quantity is greater than 0 

  // effects: product is added to the basket

  public void add(Product product, int qtyToAdd) {       

    // add the product

    // update the total value

    ...

   // check that the method preserves the invariant

     totalValue >= 0;

  }

}

Check that invariant 

holds in initial state

Check that invariant 

holds in the post-state

Invariant documentation
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Design by Contract (DbC)

• Check that a component and its 
client fulfill their contract by 
using assertions

• At the beginning of a function, 
to check pre-conditions

• At the end of a function, to 
check post-conditions

• Invariant: Condition that must 
hold throughout execution

• Check in the initial state
• Check after each function that 

modifies the system state

• Q. How is this different from 
testing?

satisfies precondition

satisfies postcondition
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Contract Testing

• An incremental, service-by-service 
approach to integration testing

• Provider: Provides data to consumers

• Consumer: Processes data obtained 
from a provider 

• Consumer-driven Contract (CDC): 
Describes what the consumer expects 
from the provider as an output

• Allows services to be tested without 
having to run all of them

• When a provider changes, contracts can 
be used as regression tests, to detect 
whether the change affects its 
consumers
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Design for Interoperability

• Syntactic interoperability: Multiple 
systems exchange data over a shared 
format & a protocol

• Semantic interoperability: Multiple 
systems exchange and assign a common 
interpretation to data

• An ontology defines concepts, their 
relationships, and constraints in an 
application area of interest

• Design to support backward 
compatibility

Mars Climate Orbiter
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Design for Scalability

• Scalability: Ability to handle growth 
in the amount of workload while 
maintaining an acceptable level of 
performance

• Design decisions: Data model (to 
store data), vertical vs. horizontal 
scaling (increase overall capacity), 
load balancing (distribute work 
across machines), caching (reduce 
bottlenecks)

• In general, correctly designing a 
distributed system is really hard 
(recall: CAP theorem)
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Design for Scalability

• “Right” decisions for scalability depend highly on patterns of 
workload
• And you won’t find these out until after you’ve deployed your system

• Delay investing in scalability until it’s necessary! 

https://martinfowler.com/bliki/MonolithFirst.html

https://martinfowler.com/bliki/MonolithFirst.html
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Design for Robustness

• Robustness: Ability to provide 
an acceptable level of 
service even when it operates 
under abnormal conditions

• Many past accidents in 
software are due to lack of 
robustness against human 
errors or unexpected faults in 
the environment

• No system will ever be 
“correct”: Be ready for things 
going wrong! 
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Design for Robustness

• Identify possible faults using fault tree analysis & HAZOP
• Apply robustness patterns: Guardrails, redundancy, 

separation, graceful degradation, human in the loop, 
undoable action
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Chaos Testing

• Evaluate robustness realistic failures 
• Create a hypothesis about system 

behavior under a failure
• Designate parts of the system as 

control vs. experimental groups 

• Inject a failure into the experimental 
group

• Measure and compare a desired 
metric across groups

• Improve the design to deal with the 
failure

• Encourages developers to deliberately 
design the system to be ready for 
failures!
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Design for Security

• Confidentiality, Integrity, Availability (“CIA”) requirements

• Threat modeling: Estimate an attacker’s possible actions

• STRIDE: A systematic approach to identify possible threats

• Principles: Least privileges, open design, reduce trusted 
computing base (TCB), don’t invent your own security methods
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Design for Usability

• Mental model: A person’s understanding of how system works
• Mental model mismatch can cause confusion, increase user’s effort 

and errors, lead to accidents…
• Design for alignment: Don’t invent a new UI unless necessary

• Identify user’s mental model through similar apps or usability testing
• Help users adapt their model through onboarding & transparency
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Design for AI-Enabled Systems

• Special design considerations 
are needed, especially for data 
curation, training, and model 
monitoring

• Accuracy is not the only 
important quality of an ML 
model!

• Ultimately, ML models are just 
one type of components within a 
larger software system; design 
principles & methods from other 
lectures still apply!
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Ethical and Responsible Design

• Software engineers have power 
to influence users, environment, 
and ultimately the society

• Identify different groups of 
users who may be affected 

• Think of possible harms that 
can be caused by software

• Deliberately design the product 
to minimize harms 

• Consider: Should I build this 
feature if potential harm is high?
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Ethical and Responsible Design

• Software engineers have power 
to influence users, environment, 
and ultimately the society

• Identify different groups of 
users who may be affected 

• Think of possible harms that 
can be caused by software

• Deliberately design the product 
to minimize harms 

• Consider: Should I build this 
feature if potential harm is high?
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Reflections on Design
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Is Design Worth Doing?

• Q1. What are some benefits of 
doing an explicit design before 
writing code?

• Q2. What makes designing 
software particularly challenging?

• Q3. Designing a perfect system is 
difficult/impossible, so what’s the 
point anyway?
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Viewpoint: Design as Uncertainty Reduction

• Many forms of uncertainty in software
• Will users like our product? Will it be usable? Will it run fast enough? 

Will it be secure against attacks x, y, z? …

• Explicit design enables early prototyping & evaluation

• Can identify & rule out bad designs early on

• (This can be done in both waterfall & agile methods!)

• Explicit design enables better management of technical debt

• Cost of additional rework caused by choosing an early (limited) solution

• E.g., “We will just add encryption later to make the system secure”

• The goal is not to design the perfect product upfront, but to reduce 
the amount of cost possibly incurred later in the product cycle
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“The designers usually find themselves floundering in a sea of 

possibilities, unclear about how one choice will limit their 

freedom to make other choices...

There probably isn’t a ‘best’ way to build it, or even any major 

part of it; what’s important is to avoid a terrible way, and to 

have clear division of responsibilities among the parts.”

Butler Lampson

Hints for Computer Systems Design
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Viewpoint #2: Design as Resiliency Building

• Resiliency: Ability of a person or a system to tolerate external 
disturbances and bounce back 

• Resiliency in system

• Changeability, scalability, robustness, security – these are about 
dealing with different types of disturbances to the system

• If you don’t design resiliency into the system, unlikely that this property 
will “emerge” by itself

• Resiliency in designer

• By studying & evaluating alternative designs, the designer will develop 
an in-depth understanding of the problem & solution spaces

• This knowledge is crucial for maintaining & evolving the system as 
requirements inevitably change over time

• (Product trouble often begins when this person leaves the project!)
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Perspective: Design as Problem Solving

• Design is a systematic, rational process
• A description of a problem space & 

constraints (i.e., assumptions) is given

• Designer makes a sequence of design 
decisions

• Each candidate solution is evaluated until a 
satisfactory design is found

• Simon hinted that one day, this process 
could be automated by computers
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Perspective: Design as Problem Setting

• Design is a conversation between the 
problem space & the designer

• Simon’s model is flawed; designers don’t 
actually work like this in practice

• As the designer explores possible 
solutions, they learn more about the 
problem itself

• Outcome of design is both the product & 
also an increased understanding of the 
problem space

• This is unlikely to be fully automatable by 
computers
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Simon vs. Scholn

• Q. Which one do you think is the “right” model of the design?
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Future of Software Engineering?

• Q1. Will AI/LLMs replace software engineers in the future?

• Q2. Will software become more reliable and correct because of AI?
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Closing Thoughts

• There will always be new technologies that push the level of 
abstraction higher (better LLMs, higher-level languages, etc.,)

• But design principles and methods from this class have existed 
for a long time and will continue to be relevant

• None of these methods, out-of-the-box, will guarantee that your 
product will be successful

• Human judgement is still needed to decide when it makes 
sense to apply a certain principle/method

• But being deliberate about design, considering alternative 
options, and communicating them effectively will help you 
become a successful software engineer
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Summary

• Exit ticket!
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