
17-723: Designing
Large-scale
Software Systems
Course Review
April 22, 2024

2Designing Large-scale Software Systems - Course Review

This Lecture
• Recall important design concepts and principles
• Describe the connections between the topics

3Designing Large-scale Software Systems - Course Review

Learning Objectives
● Describe, recognise, and apply principles for: Design for reuse, design with

reuse, design for change, design for robustness, design for testability, and
design for scale

● Explain how to adapt a software design process to fit different domains, such as
robotics, web apps, mobile apps, and medical systems

● Identify, describe, and prioritize relevant requirements for a given design problem
● Generate viable design solutions that appropriately satisfy the trade-offs between

given requirements
● Apply appropriate abstractions & modeling techniques to communicate and

document design solutions
● Evaluate design solutions based on their satisfaction of common design

principles and trade-offs between different quality attributes

4Designing Large-scale Software Systems - Course Review

Course Roadmap
Foundational concepts & techniques for design
Domain & design modeling, quality attributes & trade-offs, design
space, generating design alternatives, design review, design
processes

Designing for quality attributes
Design for change, interoperability, testability, reuse, scalability,
robustness, security, usability, AI, ethics

5Designing Large-scale Software Systems - Course Review

Problem vs. Solution Space

• Software (solution space) is one part of the system, and have limited control over
the rest of the world (problem space)

• Domain assumptions are just as critical in achieving requirements
• If you ignore/misunderstand these, your system may fail or do poorly (no

matter how perfect your software is)
• Identify and document these assumptions as early as possible

6Designing Large-scale Software Systems - Course Review

Quality Attributes (QAs)
• Functionality is just one

aspect of software
• QAs are keys to making your

product successful
• QAs should be specified in a

way that is measurable and
describing a scenario that
your system handles

• QAs often conflict with each
other! Consider trade-offs
and prioritize for ones that are
most important

7Designing Large-scale Software Systems - Course Review

Generating Design Alternatives

• Avoid sticking to the first design option that you think of (anchoring)
• Think of multiple design options!

• Even if you are sure that you have enough, try to think of more
• Discuss the options with other team members; this may generate

additional options
• Keep a catalog of design patterns, but do not overuse them

A field guide to boxology: Preliminary classification of architectural styles for software systems (Shaw & Clements, 1997)

8Designing Large-scale Software Systems - Course Review

Arguing for Design

• You must be able to provide a sound argument (with evidence)
that your design achieves intended functionality & QAs

• If you can’t come up with an argument, how do you know it works?
• Assurance case is one way to structure your arguments
• Apply adversarial thinking to find weaknesses and improve your

argument

9Designing Large-scale Software Systems - Course Review

Course Roadmap
Foundational concepts & techniques for design
Domain & design modeling, quality attributes & trade-offs, design
space, generating design alternatives, design review, design
processes

Designing for quality attributes
Design for change, interoperability, testability, reuse, scalability,
robustness, security, usability, AI, ethics

10Designing Large-scale Software Systems - Course Review

Design for Changeability

• Changeability: The amount of effort involved in making a
particular change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: ??

11Designing Large-scale Software Systems - Course Review

Design for Changeability

• Changeability: The amount of effort involved in making a
particular change to a system

• Key concept: Dependency between components
• Higher the degree of dependency, more you will need to change

• Information hiding: Hide secrets that are likely to change behind
a component interface

12Designing Large-scale Software Systems - Course Review

Design for Changeability: SOLID Principles

• Single responsibility: ??
• Interface segregation: ??
• Dependency inversion principle:

??

Remember: Changeability
also adds complexity &
costs to your system!

13Designing Large-scale Software Systems - Course Review

Design for Changeability: SOLID Principles

• Single responsibility: Each
component should be responsible
for fulfilling a single purpose

• Interface segregation: An interface
should not force its clients to depend
on unnecessary details

• Dependency inversion principle:
“High-level”, application-logic
component should not depend on
“low-level”, general-purpose
components

Remember: Changeability
also adds complexity &
costs to your system!

14Designing Large-scale Software Systems - Course Review

Design For Interoperability
When does it apply? Why is it important?

• When building systems of systems
• When using other services or providing services to others

15Designing Large-scale Software Systems - Course Review

Design For Interoperability
• How to generate designs for interoperability?

• Create Shared Interfaces / Data Formats
-> Syntactic Interoperability

• Define the Semantics of Shared Data to avoid mars climate orbiter
failure!
-> Semantic Interoperability

16Designing Large-scale Software Systems - Course Review

Design For Interoperability
• How to communicate designs for interoperability?

• Interface Descriptions (e.g., OpenAPI)

Semantic
View

Describe the purpose / meaning of the resource / action:
• Side-effects: Changes to the state of a resource or environment
• Usage restrictions: Who can perform this action?
• Error Handling: What errors can occur and why?
• Examples: Examples of outputs for a given input

Syntactic
View

Describe document format, the actions that can be performed, their
parameters, and outputs.

17Designing Large-scale Software Systems - Course Review

Design For Interoperability
How to evaluate designs for interoperability?

• Evaluation of an Implementation: Measure The Percentage of Data
that has been Exchanged Correctly

• Evaluation of a Design: Measure the Effort to Implement the
Interface in all Systems / Components

• Evaluation of a Design: Measure the Variability Allowed by the
Interface / Format

18Designing Large-scale Software Systems - Course Review

Design For Interoperability
How does Interoperability relate to … ?
• Reusability?

• Interoperability allows you to “reuse” a running system rather than
integrating the code into your system

• Changeability?
• Fixed interfaces often limit changeability

• Performance?
• Serialization and deserialization of data could add a small runtime

overhead that is often not significant

19Designing Large-scale Software Systems - Course Review

Design For Testability
How to evaluate designs for testability?

• Controllability measures how easy it is to provide a program or
component with the needed inputs, in terms of values, operations,
and behaviors, and bringing it into the desired state that should be
tested.

• Observability measures how easy it is to observe the behavior of a
program or component in terms of its outputs, quality attributes,
effects on the environment, and other hardware and software
components.

20Designing Large-scale Software Systems - Course Review

Design For Testability
How to generate designs for testability?

• Mock Components verify indirect outputs via assertions
• Test Stubs control indirect inputs
• Test Spies verify indirect outputs via logging
• Test-driven Development ensures all written code is easily testable

by writing tests before implementation
• SOLID Principles ensure code is easily testable

21Designing Large-scale Software Systems - Course Review

Design For Testability
How to communicate designs for testability?

• Via test cases ☺

22Designing Large-scale Software Systems - Course Review

Design For Testability
How does Testability relate to … ?
• Changeability?

• They both support each other

23Designing Large-scale Software Systems - Course Review

Design For Reuse?
When does it apply? Why is it important?
• Reuse saves implementation effort
• Reusable modules are easier to understand
• Reused modules tend to have higher software quality /

fewer defects

24Designing Large-scale Software Systems - Course Review

Design For Reuse
How to evaluate designs for reusability?

• Reuse Scenarios
• Unit of Reuse, Context of Reuse, Type of Adaptation, Effort of Adaptation

25Designing Large-scale Software Systems - Course Review

Design For Reuse
How to generate designs for reusability?

• Simple, Well-Documented Interfaces: Reduce the complexity of the interface
and the assumptions the package makes about input data, actions, and
environment

• Loose Coupling: Each module should depend on as few components as
possible. Dependencies should be explicit and minimize assumptions.

• High Cohesion: Elements within a module should work together to fulfill a
single, well-defined purpose.

• SOLID Principles ensure code is more reusable
• Minimize AT-Modules, Maximize 0-Modules
• Avoid Dependencies from Large & Complex A Modules to T Modules
• Reduce Coupling to Frameworks

26Designing Large-scale Software Systems - Course Review

Design For Reuse
How to communicate designs for reusability?

• Description of Reuse Context
• Module Views
• Interface Descriptions

27Designing Large-scale Software Systems - Course Review

Design For Reuse
How does reusability relate to … ?
• Changeability?

• They both support each other
• Testability?

• They both support each other
• Performance?

• More reusable designs can, in some cases, be slightly slower

28Designing Large-scale Software Systems - Course Review

Design With Reuse
How to generate designs with reuse?
• Identify Violated Assumptions of reused package

to avoid Ariane 5 rocket launch failure
• Strive for Fewer Package Dependencies

to avoid the left-pad disaster
• Keep Versions of Your Dependencies Fixed

to avoid API-breaking changes
• Update Your Dependencies To Receive Bug Fixes

29Designing Large-scale Software Systems - Course Review

Design With Reuse
How to evaluate a potential reuse candidate?
• Cost-Benefit Analysis:

Effort to adapt vs. Effort saved
the reusable module reusing the module

30Designing Large-scale Software Systems - Course Review

Design Process
How to design in agile Projects?
• Follow a Risk-Driven Approach to minimize unnecessary

upfront design while still tackling high-priority risks
• Focus on Changeability to “respond to change” and to delay

important decisions
• Maintain a technical dept backlog

to keep track of design compromises

31Designing Large-scale Software Systems - Course Review

Design Process
How to consider the Human Aspect of Software Design?
• Don’t Design In an Isolated Ivory Tower
• Design is a Collaborative, Hands-on Activity
• Combine Rational and Intuitive Decision Making

32Designing Large-scale Software Systems - Course Review

Design Process
How to Adjust the Design Process To Domain-Specific
Needs?

• Higher risk domains need more upfront design than lower
risk domains

• Longer projects need more design documentation to keep
track of previously made decisions

33Designing Large-scale Software Systems - Course Review

Design for Scalability
• Scalability: Ability to handle growth

in the amount of workload while
maintaining an acceptable level of
performance

• Design decisions: Vertical vs.
horizontal scaling (increase
capacity), load balancing (distribute
work), caching (reduce bottlenecks)

• The “right” decisions for scalability
depend highly on patterns of
workload

• Delay investing in scalability until it’s
necessary!

34Designing Large-scale Software Systems - Course Review

Design for Robustness

• Robustness: Ability to provide an acceptable level of service even
when it operates under abnormal conditions

• No system will ever be “correct”: Be ready for things going wrong!
• Identify possible faults using fault tree analysis & HAZOP
• Apply robustness patterns: Guardrails, redundancy, degradation…

35Designing Large-scale Software Systems - Course Review

Design for Usability

• Mental model: A person’s understanding of how system works
• Mental model mismatch can cause confusion, increase user’s effort and

errors, lead to accidents…
• Identify user’s mental model through similar apps or usability testing
• Design for alignment; help user build correct mental model through

onboarding and explanations

36Designing Large-scale Software Systems - Course Review

Design for AI-Enabled Systems
• Special design considerations

are needed, especially for data
curation, training, and model
monitoring

• Accuracy is not the only
important quality of an ML model!

• Ultimately, ML models are just
one type of components within a
larger software system; design
principles & methods from other
lectures still apply!

37Designing Large-scale Software Systems - Course Review

Ethical and Responsible Design
• Software engineers have

power to influence users, our
environment, and ultimately
the society

• Identify different groups of
users who may be affected

• Think of possible harms that
can be caused by software

• Deliberately design the product
to minimize harms

• Consider: Should I build this
feature if potential harm is
high?

38Designing Large-scale Software Systems - Course Review

Future of Software Engineering?

Q. Your thoughts?

39Designing Large-scale Software Systems - Course Review

• There will always be new technologies that push the level of
abstraction higher (better LLMs, higher-level languages, etc.,)

• But design principles and methods from this class have
existed for a long time and will continue to be relevant

• None of these methods, out-of-the-box, will guarantee that
your product will be successful

• Human judgement is still needed to decide when it makes
sense to apply a certain principle/method

• But being deliberate about design, considering alternative
options, and communicating them effectively will help you
become a successful software engineer

Closing Thoughts

40Designing Large-scale Software Systems - Course Review

Project Presentation
• In class this Wednesday
• Reflect on the design decisions, process, and teamwork
• 15 min per team: We will be strict about the time!
• Focus on content, not layout or visuals
• See the project document for more instructions

41Designing Large-scale Software Systems - Course Review

Final Exam
• Time: 8:30-11:30 am, Friday, May 3
• Location: SH (Scaife Hall) 238
• Open book (but no LLMs or contact with other humans)
• Every topic from the semester is within the scope
• Similar in style to the midterm & homework questions: Given a

case study system, generate multiple design options, evaluate
them with respect to quality attributes, consider trade-offs, and
justify your final decision

