Design Abstractions

17-423/723 Designing Large-Scale Software Systems

Lecture 3
Jan 22, 2025

Learning Goals

Describe the role of abstraction in communicating designs

Describe common types of design abstractions

Select and apply a suitable notation to model an aspect of a design
Generate questions to explore further design decisions given a model

Logistics

Homework 1 is out on Canvas; due next Wednesday, Jan 29

Practice on building a context model (last lecture) & design models (today)
Submission through Gradescope

Recitation this week: How to work effectively in a team!

Project teams will be announced before the recitation

Communicating Designs

Last class: Use of a context model to understand the problem space (entities &
assumptions)

This class: Models for communicating design ideas in the solution space

How do software designers communicate ideas?

Designers use sketches

To brainstorm ideas
To explain how a design works
To ask questions about designs

Designers document their work

542 ason TS

1 Introduction
'N'\-au"'uo—-u.,vn Botades mode's nmumu-mw—n,mw'
cons vime pomara ™ S bgiaer
& l-:" ML Boaa, Man o e e DEMG

it Cumtase Serpn Tempiom © Satne # Sa b [A00amn] daatase despr Sesirse
Par 15000 e [Ju Mode Saia of e s
= i iyt dadeion, rerinirn Lien S350~ whiaL i svagatagchemanm. Whiee

et and CLage of e Db, #nd
Wﬂo‘!o.ﬂfl CIETL AT e
1.1 Purpose
APy e v AT O RS

B b s MRS TR G050 DAL M BELSTIND B FARLTON (Sl ©
DN B LA B B PSRBT W T TS ALLIY AR,

1.2 Scope Approach and Memods

Duacrie haacoge oihis document 30 & relams © ha project For sampie:
Tha Cumsasa Dusipe b e {400l on 13 compotad o ettt b umase otaca darked 3y
ag0Rg STAL T B owns, i AL T G S B AIALADL T
Srat e Exrivg Ao b o Belons sy B oAl ® SOOI il dascrbad
PP Lni s 100 AEATONL B3 Satned 7 P Qo) B3 L0ORER] MOSSAL o Pe B0 E 30N
Hiphen Saa

1.3 System Overview

rwhich hs £ Saaigrad Th san
uu-nm aaigrans and chans irwched in declslon-making roles.

print enp

/

e e Ceale
Frojacriganase
e race
b
B Majer agohcaten,
Crarsdoralanes Cxaradonal in b slogmane Uindar|
el concitora.

System Dosnsary

Classroom Child
Thsmo: Thoto stang
Schedule Class strh

Date:date special needs:string
Time thne ot _plw-ru
program: Aring. Lass()
Tet_claEsnol) su specul needs()
set_schedule() g4t photo()
setdate() get_classQ)
settine() get_special needs()
set_progran()
_classo() e—
get_schedleQ)
gl
gettime()
£t_program()
Account
regfees:float Employees
tutionfee:float punchintime
discount:float mﬁ
net:float payflot
latefee:float payrdoflodt
latepickfeefloat 3 Lo
set_regfees() set_pmchont()
set ionfeel) set_wrorkbws()
= sLpR()
Zet workbrs()
gty
Cock

=

Chat

<conmnt>=N [v wis ordwed)

comintr
e

e]

Py foe
Wi

print_signinot()
prit customermfb
print_classinfa()
prit_bday()
pm,reme;rﬂJ
rint rnmiza()
rint_chilineeds()
prit_receipt()

0

prit emphenithold()

S

Customer

Timesheetshabies List Waitingeustomer
L lognotes String
signin-time e
signout time set_ wail erf)

set_lo

get_w:

o get lo Invalid orders WAREH:
IOUSE

set_signin() CUSTOMERS
set_signout()
ot
get_signout() arder books

cotails snipping

details

customer name,
customer address

AECEIVE
ORDER

biling
Intormation

customer name,
invoice details

-CUSTOMEHS

customer name,
customer address

books

invaices,
statements

COLLECT
PAYMENT
CUSTOMERS

payments,
Inquiries

Viewpoint: Code as Design

Code is the final design and the only source of the truth
Source code listing is the only design documentation that we need

Q. What do you think? Arguments for & against?

Jack W. Reeves “Code as Design: Three Essays”
https://www.developerdotstar.com/mag/articles/reeves design main.html

https://www.developerdotstar.com/mag/articles/reeves_design_main.html

Designers use abstractions

For most systems, code is too complex for a single person to understand
Code is not an ideal medium of communicating ideas

Code does not capture everything about design
- Q. What are some information that is not captured in the code?

Instead, designers communicate through an abstraction of a system — a
description that focuses on a particular aspect & ignores other details

Purpose of an Abstraction

Abstractions aid in understanding
Each abstraction highlights particular aspects of a system and deliberately hides

other details

Abstractions facilitate reasoning
Each abstraction answers certain types of questions about the system

Abstractions are reusable
Each abstraction captures a commonality across multiple systems (within a single

domain or sometimes across multiple domains)

What can we reason about?

Application " . <
PP (file name, chunk index) | GFS master P /foo/bar
GFS client | File namespace ,~ chunk 2ef0
(chunk handle, /
chunk locations ‘
) Legend:
mmm) Data messages
])]
Instructions to chunkserver = Control messages
Chunkserver state
(chunk handle, byte range) ' s '
GFS chunkserver GFS chunkserver
chunk data ; : _ ————————— s
Linux file system Linux file system

Bl .. bl
Figure 1: GFS Architecture

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM
SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

What can we reason about?

User 1 User2 Cloud | Attacker
[

T

| |

| 1: Send authentication + send idendity proof data ()
L
|

| |
[5]4 2: give access ta legitimate users ()

i

|

T
:
|
!
.
3: store encrypted data with accesé policies () »E_I
|
:
|
|
:
|
|
|
|

|
| 4: legitimate user request for
: access to encrypted data ()

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5: uploading large files or SQL :
injection () n

|

|

|

|

|

|

6: DoS attack ()

4

Web of Things: Security Challenges and Mechanisms. Rhumba Sardar and Tayyaba Anees.
IEEE Access (2021).

What can we reason about?

(LiftTicket) i SkiResort) (Summit
SeasonYear i | Name ; < Name
Type Location Drop
AgeGroup URL Base
Price LongestRun) 1
) ’ Skiable Terrain
! NumberOfRuns) N
% Lift
- ~ Name
ResortStatistics Capacity
SeasonYear Type
DaysOpen
Snowfall

Notations for Common Design Abstractions

Component diagrams: What are major components in the system and how do
they communicate with each other?

Data models: What types of data does the system store and what are their
relationships?

Sequence diagrams: How different actors (domain entities & system
components) collaborate to carry out some functionality?

State machines: What states can the system be in and what events cause it to
change its state?

Modeling in this class

Sometimes, models are themselves developed as a formal, first-class artifact

e To rigorously specify & verify properties about the system
e To generate a working implementation (e.g., model-driven engineering,
automatic code generation, Al-driven development)

In this class, the goal is to communicate

e To explain a design to someone who will work on the system later
(sometimes, yourself)

e To provide a high-level overview of the system

e To explain an aspect of the system that is particularly complex

iIc Voting System
xample: Electronic

Vore

OFFICIAL gay o7
LECTI

NOVEMBER 6, 2917

ELECTORS orposs
0

JILL STElY
CHER! o,

GARY JOHnsom
AMES P. Gy

MITT ROMMNE Y
PAUL Ryay

Irite.in

Voting System: Workflow

A voter walks to an electronic voting machine and enters their voter ID
information.

The voting software checks whether the voter is registered to vote.

The voter is presented with an electronic ballot with a list of candidates.

The voter selects a candidate and casts their ballot by confirming their choice.
The voting software collects all of the ballots and produces the final count for
each candidate.

The election officials retrieve and post the election results on a public board.

Context Model for the Voting System

REQ: Election results
accurately reflect the
voters’ intent

,, Election _
Candidate —— count Result — publish — Election
; Board Official
AionResults
voteFor Software
3 (Machine)
castBallot lookUpVoter
Voter ——— register Regliitsrtatlon

Component Diagram

Component Diagram

Purpose
Describe the major components in the software system, which components
communicate with each other, and how they communicate.

Building blocks

e Component: A software component, responsible for carrying out a distinct
unit of functionality

e Connection: A directed connection between a pair of components, labeled
with an event (e.g., an API call) or data flow

e Component responsibilities (in text annotations): Describe the
responsibilities of each component.

Activity: Design the Voting Software

REQ: Election results
accurately reflect the

voters’ intent

Election
Official

List

; Election
Candidate |[—— count — Result — publish —
! Board
AionResults
voteFor Software
' (Machine)
castBallot lookUpVoter
Voter register Registration

What is the specification of the
voting software?

What components does the
voting software consist of?

How do the components interact
with the domain entities?

How do these components
interact with each other?

Component Diagram: Example

lookUpVoter

el

Registration
System

checkRegistered

e

castBallot

Voter
Interface

process

Ballot

storeBallot

Ballot
Processor

\ 4

Ballot DB

send
Ballots

_| Central Ballot | _

Server

obtain
Ballots

Vote
Counting
System

counts

A

Election
Official
Interface

elegtionResults

L >

Component Responsibilities

Voter Interface: Receives inputs from the voter & forwards ballot information to the
Ballot Processor.

Registration System: Checks whether a voter is registered by looking up an external
registration list.

Ballot Processor: Processes & stores each ballot on a local database. Uploads all of
the ballots to the central server.

BallotDB: Stores the ballots cast so far for a local precinct.
Central Ballot Server: Stores all of the ballots across multiple precincts.
Vote Counting System: Compute the final tally of votes for each candidate.

Election Official Interface: Serves requests from an election official to retrieve election
results.

Component Diagram: Design Questions to Ask

Each model is a starting point for asking & discussing further design questions

Different types of models encourage different types of questions

Component Diagram: Design Questions to Ask

What information is passed between one component to another? Is there a return
value?

What type of communication mechanism is used for each connection? (e.g.,
HTTP/S, RPC, Bluetooth) Is the communication synchronous or asynchronous?

Which components interact with the entities in the problem space (e.g., users)?

Which hardware device is each component deployed in? Which components are
deployed on the same device?

What if a component changes or fails? What other components does it affect?

Data Model

Data Model

Purpose

e Describe different types of data that the system needs to remember to fulfill its
specification
e Serve as the conceptual schema for designing a database

Building blocks

e Data type: A collection of data elements or objects

e Relation: A directed relation between a pair of data types

e Multiplicity constraints: A constraint on a relation, specifying how many
instances of the two data types can be related to each other

Data Model: Relations

A relationship between different data types

Types of relations:
e Property
e Containment
e Association
e Naming

Q. What kinds of relations are these?

friends
User E

[

Shape

Directory

Course

Machine

color
Color
contains
- FSObject
enrolled
Student
ip

.. IPAddress

Data Model: Multiplicity Constraints

Constraints on relations
e Ris arelation of type Ato B

e R maps mA'stoeachB m n |
e R mapseachAtonB’s g

These constraints will eventually need

to be enforced in the database design + one or more
* zero or more
! exactly one
? atmostone
omitted = *

Data Model: Multiplicity Examples

FSObject

7

e

|

contains

File Directory

?

color 1
Shape .. Color
5 Ap. 9
Machine .. IPAddress
. » contains]
Directory |* . FSObject
enrolled
Course * | Student

+ one or more

*
:
7

zero or more
exactly one
at most one

omitted = *

Data Model: Voting System

* reqistered !
Voter 9
|
casts
!
Ballot
selection

Precinct

runsin

Candidate

*

assigned

-

Count

Data Model: Design Questions to Ask
Are we capturing all information that the system needs to function (and also
achieve its quality attributes - e.g., security, availability)?

Do the multiplicity constraints reflect the real world scenarios? Are there any
missing constraints? Are some constraints too strong?

Will all relations be stored on the same database, or be distributed across multiple
databases? If distributed, do we need to consider consistency issues?

Is some of the data potentially sensitive? Do we need additional security or privacy
mechanisms?

Sequence Diagram

Sequence Diagram

Purpose
Describe how a set of domain entities and system components collaborate in
sequence to achieve a piece of functionality

Building blocks

e Process: A domain entity or system component
e Message: A message passed from one process to another

Sequence Diagram: Example

Voter

Voter Interface

start —

—

candidate —
-« List
| select |

) I
«— confirm?

confirm _

Registration
System

Ballot Ballot
Processor DB

Registered — >

—
. OK

— processBallot

\4

— storeBallot -

Sequence Diagram: Design Questions to Ask

What happens if a process terminates its activity early?

Is it possible for a message to be lost, and how does the system handle this?
What if it arrives late?

What if a process receives two messages out of order? Does the order of
execution matter for functionality or a quality attribute?

Are there any other processes that we are missing in this scenario?

Voter Fraud

rl ' - _f.

FRANKFORT — A former Clay County precinct worker testified Friday that top
election officers in the county taught her how to change people's choices on voting
machines to steal votes in the May 2006 primary.

Voters walk away from the machine before pressing “confirm”
Election officials enter booth, press “back” & modify the vote

Tips for Building Diagrams

Aim for simplicity & clarity!

Keep diagrams to a reasonable size. If a diagram gets too big, break it into
multiple ones.

Annotate a diagram with text to explain a concept (e.g., the responsibility of a
component) if its meaning is not obvious from its label

Use intuitive names! Avoid meaningless names (e.g., component named
“Service”).

Consistency between Diagrams

Try to use consistent names for the same concepts (components, events, etc.,)
across multiple diagrams

A concept in one diagram may be represented by multiple concepts in another
diagram; if so, explain how they are related

Consistency between Diagrams

lookUpVoter

Registration
System

checkRegistered

castBallot process
Ly Voter Ballot | Ballot ,| Central Ballot | _

E interface Processor send Server obiain
Ballots Ballots

storeBallot l

Ballot DB

Voter input “castBallot” is

Vote
Counting
System

l counts

Election
Official
Interface

implemented by Voter Interface
as a sequence of events “start’,

“select” and “confirm”

eledtionResults

Voter Voter Registration’ Ballot Ballot
Interface Checker Processor DB
I start —
L check
Registered ~ >
—
le—OK
candidate —
nill List
 —
select — |
| «— confirm?
S i
confirm ___ |
— processBallot >
— storeBallot —

Tips for Building Diagrams

We will ask you document your design using some of these models throughout
project milestones

Use these models in your team discussions! We will ask for your reflections on
how they helped (or not) with designing your system

Treat these models as a tool for brainstorming & communicating, not for
documenting everything perfectly

e Focus on aspects that are most important for your system (recall
“risk-driven” approach to design)
e Use models to ask further questions about the system!

Summary

Exit ticket!

