
Design Abstractions
17-423/723 Designing Large-Scale Software Systems

Lecture 3
Jan 22, 2025

Learning Goals

● Describe the role of abstraction in communicating designs
● Describe common types of design abstractions
● Select and apply a suitable notation to model an aspect of a design
● Generate questions to explore further design decisions given a model

Logistics

● Homework 1 is out on Canvas; due next Wednesday, Jan 29
● Practice on building a context model (last lecture) & design models (today)
● Submission through Gradescope
● Recitation this week: How to work effectively in a team!
● Project teams will be announced before the recitation

Communicating Designs

Last class: Use of a context model to understand the problem space (entities &
assumptions)

This class: Models for communicating design ideas in the solution space

How do software designers communicate ideas?

Designers use sketches

To brainstorm ideas
To explain how a design works
To ask questions about designs

Designers document their work

Viewpoint: Code as Design

Code is the final design and the only source of the truth

Source code listing is the only design documentation that we need

Q. What do you think? Arguments for & against?

Jack W. Reeves “Code as Design: Three Essays”
https://www.developerdotstar.com/mag/articles/reeves_design_main.html

https://www.developerdotstar.com/mag/articles/reeves_design_main.html

Designers use abstractions

For most systems, code is too complex for a single person to understand

Code is not an ideal medium of communicating ideas

Code does not capture everything about design
- Q. What are some information that is not captured in the code?

Instead, designers communicate through an abstraction of a system – a
description that focuses on a particular aspect & ignores other details

Abstractions aid in understanding
Each abstraction highlights particular aspects of a system and deliberately hides
other details

Abstractions facilitate reasoning
Each abstraction answers certain types of questions about the system

Abstractions are reusable
Each abstraction captures a commonality across multiple systems (within a single
domain or sometimes across multiple domains)

Purpose of an Abstraction

What can we reason about?

Ghemawat, Sanjay, Howard Gobioff, and Shun-Tak Leung. "The Google file system." ACM
SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

What can we reason about?

Web of Things: Security Challenges and Mechanisms. Rhumba Sardar and Tayyaba Anees.
IEEE Access (2021).

What can we reason about?

Component diagrams: What are major components in the system and how do
they communicate with each other?

Data models: What types of data does the system store and what are their
relationships?

Sequence diagrams: How different actors (domain entities & system
components) collaborate to carry out some functionality?

State machines: What states can the system be in and what events cause it to
change its state?

Notations for Common Design Abstractions

Sometimes, models are themselves developed as a formal, first-class artifact

● To rigorously specify & verify properties about the system
● To generate a working implementation (e.g., model-driven engineering,

automatic code generation, AI-driven development)

In this class, the goal is to communicate

● To explain a design to someone who will work on the system later
(sometimes, yourself)

● To provide a high-level overview of the system
● To explain an aspect of the system that is particularly complex

Modeling in this class

Example: Electronic Voting System

● A voter walks to an electronic voting machine and enters their voter ID
information.

● The voting software checks whether the voter is registered to vote.
● The voter is presented with an electronic ballot with a list of candidates.
● The voter selects a candidate and casts their ballot by confirming their choice.
● The voting software collects all of the ballots and produces the final count for

each candidate.
● The election officials retrieve and post the election results on a public board.

Voting System: Workflow

Context Model for the Voting System

Component Diagram

Component Diagram

Purpose
Describe the major components in the software system, which components
communicate with each other, and how they communicate.

Building blocks

● Component: A software component, responsible for carrying out a distinct
unit of functionality

● Connection: A directed connection between a pair of components, labeled
with an event (e.g., an API call) or data flow

● Component responsibilities (in text annotations): Describe the
responsibilities of each component.

What is the specification of the
voting software?

What components does the
voting software consist of?

How do the components interact
with the domain entities?

How do these components
interact with each other?

Activity: Design the Voting Software

Component Diagram: Example

Component Responsibilities

Voter Interface: Receives inputs from the voter & forwards ballot information to the
Ballot Processor.

Registration System: Checks whether a voter is registered by looking up an external
registration list.

Ballot Processor: Processes & stores each ballot on a local database. Uploads all of
the ballots to the central server.

BallotDB: Stores the ballots cast so far for a local precinct.

Central Ballot Server: Stores all of the ballots across multiple precincts.

Vote Counting System: Compute the final tally of votes for each candidate.

Election Official Interface: Serves requests from an election official to retrieve election
results.

Component Diagram: Design Questions to Ask

Each model is a starting point for asking & discussing further design questions

Different types of models encourage different types of questions

Component Diagram: Design Questions to Ask

What information is passed between one component to another? Is there a return
value?

What type of communication mechanism is used for each connection? (e.g.,
HTTP/S, RPC, Bluetooth) Is the communication synchronous or asynchronous?

Which components interact with the entities in the problem space (e.g., users)?

Which hardware device is each component deployed in? Which components are
deployed on the same device?

What if a component changes or fails? What other components does it affect?

Data Model

Data Model

Purpose

● Describe different types of data that the system needs to remember to fulfill its
specification

● Serve as the conceptual schema for designing a database

Building blocks

● Data type: A collection of data elements or objects
● Relation: A directed relation between a pair of data types
● Multiplicity constraints: A constraint on a relation, specifying how many

instances of the two data types can be related to each other

Data Model: Relations

Q. What kinds of relations are these?

A relationship between different data types

Types of relations:
● Property
● Containment
● Association
● Naming

Data Model: Multiplicity Constraints

Constraints on relations
● R is a relation of type A to B
● R maps m A’s to each B
● R maps each A to n B’s

These constraints will eventually need
to be enforced in the database design

Data Model: Multiplicity Examples

Data Model: Voting System

Data Model: Design Questions to Ask

Are we capturing all information that the system needs to function (and also
achieve its quality attributes - e.g., security, availability)?

Do the multiplicity constraints reflect the real world scenarios? Are there any
missing constraints? Are some constraints too strong?

Will all relations be stored on the same database, or be distributed across multiple
databases? If distributed, do we need to consider consistency issues?

Is some of the data potentially sensitive? Do we need additional security or privacy
mechanisms?

Sequence Diagram

Sequence Diagram

Purpose
Describe how a set of domain entities and system components collaborate in
sequence to achieve a piece of functionality

Building blocks

● Process: A domain entity or system component
● Message: A message passed from one process to another

Sequence Diagram: Example

Sequence Diagram: Design Questions to Ask

What happens if a process terminates its activity early?

Is it possible for a message to be lost, and how does the system handle this?
What if it arrives late?

What if a process receives two messages out of order? Does the order of
execution matter for functionality or a quality attribute?

Are there any other processes that we are missing in this scenario?

Voter Fraud

Voters walk away from the machine before pressing “confirm”
Election officials enter booth, press “back” & modify the vote

Aim for simplicity & clarity!

Keep diagrams to a reasonable size. If a diagram gets too big, break it into
multiple ones.

Annotate a diagram with text to explain a concept (e.g., the responsibility of a
component) if its meaning is not obvious from its label

Use intuitive names! Avoid meaningless names (e.g., component named
“Service”).

Tips for Building Diagrams

Consistency between Diagrams

Try to use consistent names for the same concepts (components, events, etc.,)
across multiple diagrams

A concept in one diagram may be represented by multiple concepts in another
diagram; if so, explain how they are related

Consistency between Diagrams

Are these two the same?

Voter input “castBallot” is
implemented by Voter Interface
as a sequence of events “start”,
“select”, and “confirm”

We will ask you document your design using some of these models throughout
project milestones

Use these models in your team discussions! We will ask for your reflections on
how they helped (or not) with designing your system

Treat these models as a tool for brainstorming & communicating, not for
documenting everything perfectly

● Focus on aspects that are most important for your system (recall
“risk-driven” approach to design)

● Use models to ask further questions about the system!

Tips for Building Diagrams

Summary

Exit ticket!

