
17-423/723:
Designing Large-scale
Software Systems

Quality Attributes &
Trade-offs
Jan 27, 2024

2

Leaning Goals

• Describe different types of quality attributes (QAs)

• Determine QAs that are relevant for a system

• Determine metrics for measuring QAs

• Specify quality attribute requirements using scenarios

• Identify trade-offs among different QAs and compare design
options with respect to those trade-offs

3

Course Roadmap

• Foundational concepts & techniques for design
• Domain & design modeling, quality attributes & trade-offs,

generating design alternatives, design review, design processes

• Designing for quality attributes
• Design for change, testability, interoperability, reuse, scalability,

robustness, security, usability, AI, ethics

4

Today’s Questions

• What are quality attributes (QAs), and why should I care?

• How do I determine what QAs are relevant for my system?

• How do I measure and specify QAs?

• What are trade-offs among different QAs, and how do I make
the right trade-offs?

5

Quality Attributes (QAs)
• Measurable and testable properties of a product that are used

to indicate how well it functions

• Examples
• Reliability

• Availability

• Performance

• Scalability

• Robustness

• Safety

• Security

• Extensibility

• Maintainability

• Usability, and many others...

6

Where do QAs come from?

• Stakeholder needs & incentives!

• Guiding question: Who are the most important stakeholders,
and what qualities of my product do they care most about?

• Stakeholders: End users, customers, investors, government
regulators, integrators, developers, etc.,

7

Stakeholders? Relevant QAs?

8

Stakeholders? Relevant QAs?

9

Stakeholders? Relevant QAs?

10

External vs. Internal Quality Attributes

• External QAs: Qualities that are
visible to the stakeholders

• Common tendency is to focus on
external QAs only

• But internal QAs also matter! When
neglected:

• Increase in developer effort

• Increase in development costs & time

• Decrease in code quality, which also
likely leads to decrease in external QAs

• Remember: Developers are also
stakeholders of the software that you
create!

11

QAs are “Load-Bearing Walls”

• QAs are very hard to “add in later”

• Early design decisions strongly
impact the qualities of a system

• QAs are often cross-cutting
concerns and spread throughout a
system, not localized in one part

• Improving a QA typically involves
significant changes or even
redesign of the system

12

How do I measure quality attributes?

13

Measuring Quality Attributes

• To test and improve desired qualities of a software product, we
must be able to measure them

• Some QAs seem less measurable than others (security, usability
vs. performance, reliability)

• Even for a single QA, different metrics make sense for different
applications

• e.g., “Performance” has different meanings for different apps

• How do we come up with suitable metrics for a QA?

14

Goal-Question-Metric (GQM)

• A method for identifying metrics for
software quality

• Goal: A high-level goal for
evaluating the quality of a software
artifact

• Questions for characterizing the
artifact with respect to the quality

• Metrics for answering the above
questions

The goal question metric approach. Basilii, Caldiera & Rombach (1994).

15

GQM Example

16

Today’s Case Study: Spotify

17

GQM Example: Performance

Evaluate the performance of the

Spotify mobile app

??

??

?? ??

?? ??

Goal

Questions

Metrics

18

GQM Example: Performance

Evaluate the performance of the

Spotify mobile app

How much mobile

resources does it

consume?

Average song

load time (ms)

How fast does the app

load a request song?

How long does a search

query take?

Average query

response time (ms)
Memory

usage (MB)

Cache usage

(GB)

Goal

Questions

Metrics

19

GQM Example: User Satisfaction

Evaluate the user satisfaction of

the Spotify mobile app

??

?? ??

??

Goal

Questions

Metrics

20

GQM Example: User Satisfaction

Evaluate the user satisfaction of

the Spotify mobile app

Number of

concurrent users

How much do the users

use the app?

How satisfied are the

users with the app?

Average time spent

on app (min)

% users

returning to app

Average app

ratings (1-5)

Goal

Questions

Metrics

21

QA Metrics: Tips and Caveats

• Choose metrics that are observable & testable
• “Likelihood of a security attack: Impossible to observe in general

• “Development time”: Too difficult to estimate accurately, even for
repeated projects

• Reuse existing metrics where possible; don’t invent your own
• We will cover these in the following lectures

• Metrics are often proxies for the underlying concept being
measured, and can sometimes be misleading

• High “User rating” or “number of user accounts” does not necessarily
mean “usable”

• “Lines of code” does not necessarily indicate “programmer productivity”

22

How do I specify quality attributes requirements?

23

Specifying QA Requirements

• A QA requirement describes the level of QA that the system is
expected to achieve

• Metrics alone are often not enough for specifying QA
requirements precisely

• For a specific QA & a metric, the system may be required to
achieve different levels of quality depending on the context

• Context: Specific environmental conditions, system state, user
inputs, or use cases

• Scenarios are one way to describe different contexts

24

Specifying QAs with Scenarios

• What does a QA scenario consist of?

• Artifact: Software artifact (an app, a module, an API function...)

• Stimulus: An input event or condition that causes the artifact to
produce a response

• Source of stimulus: The entity that generates the stimulus (e.g.,
user, another application, the API client…)

• Response: What artifact does, given the stimulus, with a metric to
define what a successful response is (e.g., time)

Source of

Stimulus
Artifact Response

Stimulus

Metric

25

QA Scenarios: Examples

26

QA Scenarios: Examples

• When the user requests to play a song, the app must load and play the
song within the next 500 ms.

• Artifact: Spotify app

• Source of stimulus: The app user

• Stimulus: Request to play a song

• Response: Load & play the song on the user’s phone

• Metric: Song latency (500 ms)

27

QA Scenarios: Good or bad examples?

• (Performance) When the user requests to play a song, the app must
load and play the song within the next 500 ms.

• (Performance) When the user requests to play one of the current top
100 songs, the app must load and play the song within next 1000 ms.

• (Availability) If the user’s phone loses the Internet connection, the
app must continue to play the current song.

• (Scalability) The system must be able to handle 200 million active
users at the same time.

• (Usability) The next released version of the app must maintain or
increase the user satisfaction rating on the Google Play store.

28

QA Scenarios: Tips and Caveats

• In general, there are too many system scenarios to enumerate

• Focus on scenarios that represent the most common use cases

• For certain qualities like robustness, security, and reliability, also
consider edge cases

• Unexpected/malicious user inputs, server failures as stimulus

• In later lectures, we will discuss methods for coming up with some of
these scenarios

• Even if the stimulus/source/response may seem obvious, be
explicit about them

• There’s always a risk of ambiguity/misinterpretation (e.g., what does
the “user” mean?)

29

How do I make trade-offs among QAs?

30

QA Trade-offs

• In a typical problem domain, there are multiple desirable QAs

• In most cases, it is difficult to design & implement a software
solution that achieves all of these QAs

• Constraints and assumptions imposed by the problem space

• Conflicts among different stakeholders’ needs

• Limited resources and time for development

• Inherent conflicts among certain types of QAs

• Often, trade-offs need to be made among QAs, to obtain
certain qualities while sacrificing others

31

QA Trade-off Example: Distributed Systems

• Consistency: Clients always read the
latest data

• Availability: Client requests always result
in a response

• Partition tolerance: System continues to
operate despite network failures

• CAP theorem: Choose two out of three
• e.g., if a network failure occurs (and system

tolerates it), choose consistency or availability

• (Generally agreed to hold in practice,
although not without some controversies)

Consistency

Availability
Partition

Tolerance

“Towards robust distributed

systems”, Eric Brewer (2000)

32

QA Trade-offs: Other Examples

• Security vs. usability
• Two-factor authentications is more secure but harder to use

• Remembering a long password is harder, but also more secure

• Security vs. performance
• Encrypting and decrypting data slows down the system while making it

more secure

• Performance vs. reliability
• TCP (slow but reliable) vs. UDP (fast but unreliable)

• Use of redundancy (backup servers) increase reliability, but also
introduces performance overhead (must keep the servers consistent)

33

QA Synergies: Examples

• Not all QA interactions are negative! QAs can also amplify
each other under certain scenarios

• Performance & usability
• Faster response times make it easier to use interactive systems

• Performance & security
• Faster intrusion detection can keep the system more secure

• Performance & reliability
• Components with message queues lose fewer messages if they

process messages faster

• Highly reliable connections do not require many retries, resulting in
faster average case delivery

34

Trade-off Analysis: Example

• Consider two models of message communication between
processes: Point-to-point and publish-subscribe

35

Point-to-Point Communication

• A process directly communicates to another process

• e.g., “Client-server” or “request-response” model

36

Publish-Subscribe Communication

• Each process publishes or subscribes to a topic

• When a publisher sends a message, every subscriber receives it
through a message broker

37

Publish-Subscribe Communication

• Each message reaches multiple subscribes, not just one

• Decouples publishers from subscribers; can add new
publishers/subscribes without affecting each other

• Topics can be dynamically added at run-time

38

Discussion: Pub-Sub vs. Point-to-Point

• Compare Pub-Sub and Point-to-Point models with respect to
the following quality attributes:

• Performance: How quickly are messages delivered from a
sender to a receiver?

• Scalability: How many additional concurrent messages can
the system handle?

• Extensibility: How much effort does it involve adding new
types of messages?

• Robustness: How well does the system handle component
failures or unexpected external events?

39

Trade-off Analysis with Decision Matrix

• Decision matrix: Summarizes trade-offs among design options
with respect to different quality attributes

QAs Option: Point-to-Point Option: Publish-Subscribe

Performance Direct messaging; stronger

guarantee on delivery time

Message delivery time affected by

number of subscribers

Scalability Limited support for large-

scale messaging

Support sending messages to an

arbitrary number of subscribers

Extensibility Adding new message types

involve changes to sender

and receiver

Can dynamically add topics,

publishers, and subscribers without

changing the others

Robustness A failure in the receiver

disrupts the senders

A failure in the broken disrupts all

publishers & subscribers

40

Making Trade-off Decisions

• Which of the options to select? Depends on the context!

• Identify QAs that are relevant to a specific use case scenario

QAs Option: Point-to-Point Option: Publish-Subscribe

Performance Direct messaging; stronger

guarantee on delivery time

Message delivery time affected by

number of subscribers

Scalability Limited support for large-

scale messaging

Support sending messages to an

arbitrary number of subscribers

Extensibility Adding new message types

involve changes to sender

and receiver

Can dynamically add topics,

publishers, and subscribers without

changing the others

Robustness A failure in the receiver

disrupts the senders

A failure in the broken disrupts all

publishers & subscribers

41

Back to Spotify

42

Making Trade-off Decisions

• Q. In Spotify, that are scenarios where the point-to-point is
more suitable? Publish-subscribe model?

QAs Option: Point-to-Point Option: Publish-Subscribe

Performance Direct messaging; stronger

guarantee on delivery time

Message delivery time affected by

number of subscribers

Scalability Limited support for large-

scale messaging

Support sending messages to an

arbitrary number of subscribers

Extensibility Adding new message types

involve changes to sender

and receiver

Can dynamically add topics,

publishers, and subscribers without

changing the others

Robustness A failure in the receiver

disrupts the senders

A failure in the broken disrupts all

publishers & subscribers

43

Costs in Trade-off Analysis
• Every design decision regarding a QA

has some development costs
associated with it

• Achieving security involves adding
encryption, storing secrets in databases,
hiring a security expert/tester, etc.,

• Achieving scalability involves purchasing
more servers, implementing distributed
protocols to keep the servers consistent…

• In this class, we will (mostly) ignore the
issues related to costs

• In practice, costs should be considered
as an additional dimension in the
decision matrix along with other QAs

44

Quality Attributes: Takeaways

• Functionality is not the only concern of software design

• Quality attributes measure the “goodness” of a design along a
certain dimension

• Quality attributes should be measurable

• Quality attribute requirements should be specified using a
scenario that describes a particular system context

• Quality attributes are very hard to “add in later” and must be
considered early in the design process

• Achieving all QAs may often be impossible, and thus trade-
offs among them must be made

45

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Leaning Goals
	Slide 3: Course Roadmap
	Slide 4: Today’s Questions
	Slide 5: Quality Attributes (QAs)
	Slide 6: Where do QAs come from?
	Slide 7: Stakeholders? Relevant QAs?
	Slide 8: Stakeholders? Relevant QAs?
	Slide 9: Stakeholders? Relevant QAs?
	Slide 10: External vs. Internal Quality Attributes
	Slide 11: QAs are “Load-Bearing Walls”
	Slide 12: How do I measure quality attributes?
	Slide 13: Measuring Quality Attributes
	Slide 14: Goal-Question-Metric (GQM)
	Slide 15: GQM Example
	Slide 16: Today’s Case Study: Spotify
	Slide 17: GQM Example: Performance
	Slide 18: GQM Example: Performance
	Slide 19: GQM Example: User Satisfaction
	Slide 20: GQM Example: User Satisfaction
	Slide 21: QA Metrics: Tips and Caveats
	Slide 22: How do I specify quality attributes requirements?
	Slide 23: Specifying QA Requirements
	Slide 24: Specifying QAs with Scenarios
	Slide 25: QA Scenarios: Examples
	Slide 26: QA Scenarios: Examples
	Slide 27: QA Scenarios: Good or bad examples?
	Slide 28: QA Scenarios: Tips and Caveats
	Slide 29: How do I make trade-offs among QAs?
	Slide 30: QA Trade-offs
	Slide 31: QA Trade-off Example: Distributed Systems
	Slide 32: QA Trade-offs: Other Examples
	Slide 33: QA Synergies: Examples
	Slide 34: Trade-off Analysis: Example
	Slide 35: Point-to-Point Communication
	Slide 36: Publish-Subscribe Communication
	Slide 37: Publish-Subscribe Communication
	Slide 38: Discussion: Pub-Sub vs. Point-to-Point
	Slide 39: Trade-off Analysis with Decision Matrix
	Slide 40: Making Trade-off Decisions
	Slide 41: Back to Spotify
	Slide 42: Making Trade-off Decisions
	Slide 43: Costs in Trade-off Analysis
	Slide 44: Quality Attributes: Takeaways
	Slide 45: Summary

