
17-723: Designing
Large-scale
Software Systems
Quality Attributes & Trade-offs

2Designing Large-scale Software Systems - Quality Attributes & Trade-offs

This Lecture

• What are Quality Attributes, and why should I care?

• How do I specify Quality Attribute Requirements?

• What are Quality Attribute Trade-offs and where do they occur?

Note: ROS is just a case study, not a learning objective of this lecture

3Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Recall from Reading: Publish-Subscribe

nh.subscribe("topic_name", 10, callback);

pub = nh.advertise("topic_name");
pub.publish(msg)

publishes
to

subscribes
to

Topic

Publisher

Publisher

Subscriber

Subscriber Message
Queue

Message
Queue

4Designing Large-scale Software Systems - Quality Attributes & Trade-offs

What are Advantages and Disadvantages
of each? Discuss with your Neighbor!
Publish Subscribe Direct Communication

5Designing Large-scale Software Systems - Quality Attributes & Trade-offs

What are Advantages and Disadvantages
of each?
Publish Subscribe Direct Communication
Easier to add new publishers and
subscribers
èExtensibility

Sender can detect if listener is not available
èRobustness

Components can dynamically subscribe and
unsubscribe
èRun Time Flexibility

Easier to understand what components
communicate with each other, making it less
error-prone
èUnderstandability

Lesson Learned: Design decisions impact other properties of the system,
besides functionality. We call these other properties “quality attributes”

6Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Quality Attributes Measure the “Goodness” of
a Design along a Certain Dimension

• Functionality describes what the system does, quality attributes

describe how well it does it

• E.g., Extensibility, Availability, Security, Performance,

Robustness, Interoperability, Testability, …

7Designing Large-scale Software Systems - Quality Attributes & Trade-offs

What Quality Attributes are Important for … ?

• Social Media Systems (e.g., Facebook)

• Mars Rovers

• Financial Trading Systems Performance

Robustness

AvailabilityExtensibility

8Designing Large-scale Software Systems - Quality Attributes & Trade-offs

++

Extensibility

The degree to which a system minimizes the amount of effort
and error-proneness of adding additional functionality

More Extensible Less Extensible

+

+ -

9Designing Large-scale Software Systems - Quality Attributes & Trade-offs

How to Specify Extensibility?
• “The system should be extensible.”

• “Adding new sensors should be easy.”

• “Adding new depth sensors should not require changing
components that process depth images.”

• “Adding new depth processing functionality should minimize
changes to existing pre-processing components.”

Too broad
What does easy mean?

Good

What kinds of sensors?

Good

10Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Quality Attribute Specifications Should Be
Measurable with a Concrete Metric

• Hard Threshold (e.g., Performance: “response time < 1s”,
Availability: “99+% up time”, Security: “prevent attack”, …)

• Soft Goal (e.g., Changeability: “as little effort as possible”,
Performance: “as fast as possible”, Security: “as little data
compromised as possible”, …)

11Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Not All Extensions Are The Same
• Publish-Subscribe easily supports:

• Adding new Publishers

• Adding new Subscribers

• Publish-Subscribe does not easily support:

• Adding new data fields to the message types

Topic
Publisher

Publisher

Subscriber

Subscriber Queue

Queue

12Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Quality Attribute Specifications Should Describe
the Scenario that is being Measured

• What does the system respond to?

• Extensibility: Which features are added?

• Performance: The response time to which requests is measured?

• Robustness: Which deviations from normal conditions are considered?

• Security: What types of attacks should the system prevent?

13Designing Large-scale Software Systems - Quality Attributes & Trade-offs

What Quality Attributes are Important for … ?

• Social Media Systems (e.g., Facebook)

• Mars Rovers

• Financial Trading Systems
Again?!

Now with
Measurable
Scenarios!

Performance

Robustness

AvailabilityExtensibility

14Designing Large-scale Software Systems - Quality Attributes & Trade-offs

String-based topic names are error-prone when topic names change in one
place, but not another!
èLesson Learned: Communication Mechanisms can impact Changeability

What Could Go Wrong with ROS Topic Names?

nh.subscribe("topic_name", 10, callback);

pub = nh.advertise("topic_name");
pub.publish(msg)

publishes
to

subscribes
to

Topic

Publisher

Publisher

Subscriber

Subscriber Message
Queue

Message
Queue

15Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Real-World Bug from Autoware.AI
Bug-introducing commit (inconsistent topic-renaming):

Intended Architecture:

- ros::Publisher pub = n.advertise<[…]>("/line_class",[…]);

+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);

line_class

vector_map_loader lane_rule

subscribe

feat_proj velocity_set

publish subscribe subscribe

Most popular open-source framework for self-driving cars

16Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Real-World Bug from Autoware.AI
Bug-introducing commit (inconsistent topic-renaming):

Buggy Architecture:

- ros::Publisher pub = n.advertise<[…]>("/line_class",[…]);

+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);+ ros::Publisher pub = n.advertise<[…]>("/line",[…]);

line_class

vector_map_loader lane_rule

subscribe

feat_proj velocity_set

publish subscribe subscribe

line

Lesson Learned: When using frameworks and libraries, be aware of their quality
attributes, as even correct implementations can cause issues for your system!

17Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Fixed queue sizes might lead to message-loss if subscribers
cannot keep up with the publishing rate.
èLesson Learned: Functionality can depend on Performance

What Could Go Wrong with Message Queues?

nh.subscribe("topic_name", 10, callback);

pub = nh.advertise("topic_name");
pub.publish(msg)

publishes
to

subscribes
toTopic

Publisher

Publisher

Subscriber

Subscriber Message
Queue

Message
Queue

18Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Performance
• The degree to which a system minimizes the time between

requests and responses (response time) or maximizes the
number of responses within a given interval (throughput)

• In real-time systems worse case response time and variance
/ jitter are often more important

• Most client-server applications focus their requirements on
predictability, so care more about average case response time
and/or throughput

• High performance can positively impact usability

Lesson Learned: Some quality attributes (e.g., extensibility, changeability, testability)
are design-time concerns, while others (e.g., performance, availability, scalability)
are run-time concerns

19Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Limitations of ROS 1 motivated Big Re-design
of the Framework towards ROS 2

• ROS 1 does not support Real-Time Performance requirements

• No guarantees about message order or message delivery time

• ROS 1 does not support Security requirements

• Any component can subscribe to any topic, listening to all messages

• Effort to update from ROS 1 to ROS 2 is quite high

Lesson learned: Consider quality attributes early in
the design process

20Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Quality Attributes Are Load-Bearing Walls
• Quality attributes are very hard to “add in later”

• Design decisions that affect quality attributes are hard to change

• Early decisions in the architecture strongly impact the possible
quality attributes of a system

• Often quality attributes are cross-cutting concerns, not localized in
one part of the system, but spread throughout

Lesson learned: Consider quality attributes early in
the design process

21Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Design Exercise

How can we make publish-subscribe fast, reliable, and secure?

Lesson learned: In many cases quality attributes conflict with each other.
This requires us to settle for a solution that is “good enough” for our goal.

We can’t 😢

Performance

Security Reliability

Encryption
or no encryption?

Authorization
or no authorization? Acknowledge received

messages or don’t?

The average delay between sending data and receiving data is minimal No messages are lost

Data sent between components can only be read by authorized receivers

22Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Trade-offs in Database Systems

CAP Theorem: You can only pick 2 of:

• Consistency = Every read receives the most recent write or an error

• Availability = Every read receives a (non-error) response

• Partition Tolerance = The system continues to operate despite network

failures

Consistency

Availability Partition
Tolerance

23Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Examples of Quality Attribute Trade-offs
• Security vs. Usability

• Two-factor authentications is more secure but harder to use
• Remembering a long password is harder than

• Security vs. Performance
• Encrypting and decrypting data slows down the system

while making it more secure
• Performance vs. Reliability

• TCP (slow but reliable) vs. UDP (fast but unreliable)

Lesson learned: Since we cannot always maximize all quality attributes, we
must prioritize which ones are most important and make trade-offs accordingly.

24Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Examples of Quality Attribute Synergies
• Performance and Usability

• Faster response times make it easier to use interactive systems
• Performance and Security

• Faster intrusion detection can keep the system more secure
• Performance and Reliability

• Components with message queues lose fewer messages if they process
messages faster

• Highly reliable connections do not require many retries, resulting in faster
average case delivery

Lesson learned: Whether quality attributes conflict with each other or support each
other depends on the context and the design decision under consideration

25Designing Large-scale Software Systems - Quality Attributes & Trade-offs

How to Make Design Decisions in a Large
Design Space?
Iteratively improve your design:
1. Select a quality attribute to improve (iteration goal)
2. Chose one or more parts of the system to refine
3. Find & sketch candidate solution & describe design decisions
4. Analyze candidate solution for iteration goal and other quality

attributes
5. Iterate if necessary

This is called Attribute-Driven Design (ADD)

26Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Don’t Forget about the Cost of your Design!
• Cost is not a quality attribute, but an important architectural

driver that determines whether a design is feasible
• Cost can include the implementation effort, price of buying

existing software, and operating cost

27Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Recommended Reading on Quality Attributes

Highly
recommended
for many topics
throughout this
course. Find it
here (free with
CMU account)

https://learning.oreilly.com/library/view/software-architecture-in/9780136885979/

28Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Please Complete the Exit Ticket in Canvas!

29Designing Large-scale Software Systems - Quality Attributes & Trade-offs

Summary
• Functionality is not the only concern of software design
• Quality attributes measure the “goodness” of a design along a

certain dimension
• Quality attribute specifications should be measurable and

describe a scenario to which the system responds.
• Quality attributes are very hard to “add in later”, so consider

quality attributes early in the design process
• Since we cannot always maximize all quality attributes, we must

prioritize which ones are most important

