# Designing Large Scale Software Systems

Design space exploration

Mary Shaw January 31, 2024

## The Role of Design Spaces

Mary Shaw

IEEE Software, Feb 2012

## Design Spaces and How Software Designers Use Them

Mary Shaw and Marian Petre

Designing 2024 Workshop at ICSE, to appear

# Are there any questions?



Designing involves considering multiple alternatives and choosing the one that best fits the client's needs.

Design spaces help to organize design alternatives and the dependencies among the choices so the designer can analyze, predict, make tradeoffs, understand dependencies.

The designer's principal responsibility is to understand the client's needs and find solutions that satisfy those needs. Design spaces, like other tools and techniques, are a means to that end, not an end in themselves. The Plaid Corporation collects and analyzes very large amounts of data. In addition to its central headquarters, Plaid Corp has branches located around the country; the branches are named Red, Yellow, Blue, and Green.

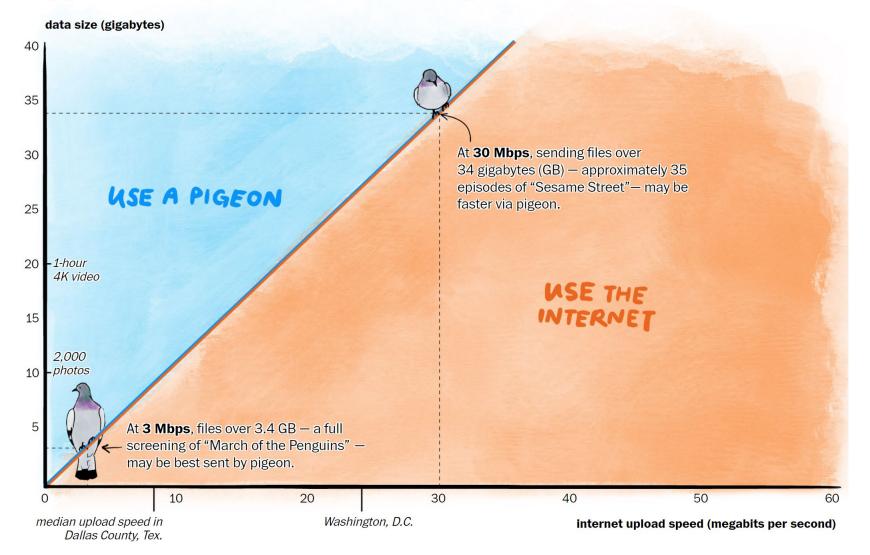
At the end of each month, each branch does some normalization and analysis of the data it has collected during the month and sends the entire dataset to Plaid Corp Headquarters.

Plaid then weaves the Red, Yellow, Blue, and Green results together and publishes a monthly report.

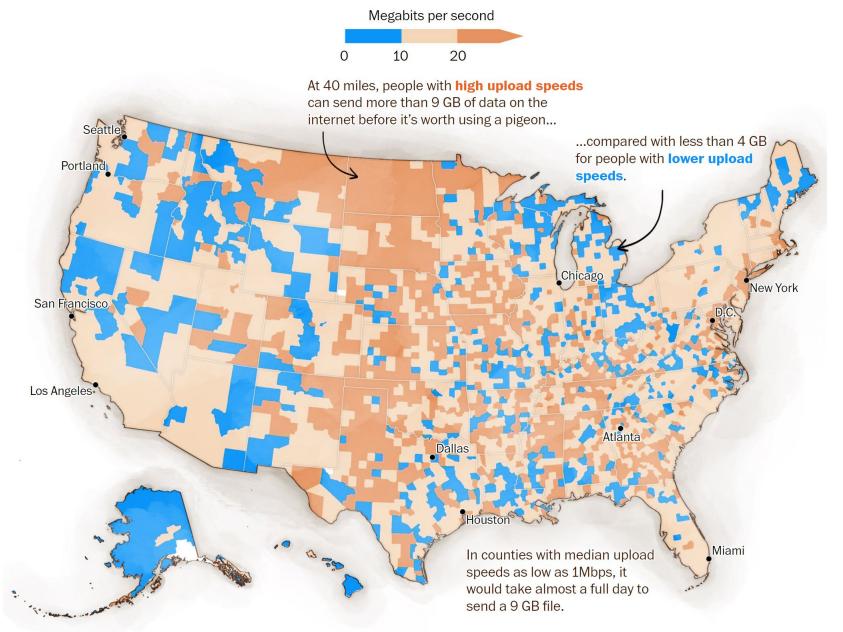
How should the Red, Yellow, Blue, and Green branches move their data to Plaid Corp headquarters? What factors (start with data size, distance, bandwidth) affect the decision?

How else could you move big datasets?

**Pigeons** 


Sneakernet

**Trucks** 


## Pigeons are still (sometimes) faster than your internet

https://www.washingtonpost.com/technology/2023/11/10/pigeons-are-faster-than-your-internet/

#### Say you're sending something 100 miles away...



## Lest you think everyone has gigabit connections ...



## Sneakernet

#### Alt text:

Every time you email a file to yourself so you can pull it up on your friend's laptop, Tim Berners-Lee sheds a single tear.

From September 2011

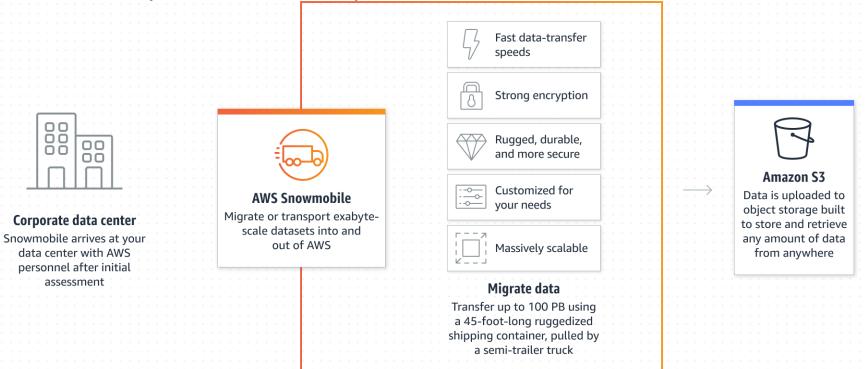
https://www.explainxkcd.com/wiki/index.php/949: File Transfer

YOU WANT YOUR COUSIN TO SEND YOU A FILE? EASY. HE CAN EMAIL IT TO - ... OH, IT'S 25 MB? HMM ... DO EITHER OF YOU HAVE AN FTP SERVER? NO, RIGHT. IF YOU HAD WEB HOSTING, YOU COULD UPLOAD IT ... HMM. WE COULD TRY ONE OF THOSE MEGASHAREUPWAD SITES, BUT THEY'RE FLAKY AND FULL OF DELAYS AND PORN POPUPS. HOW ABOUT AIM DIRECT CONNECT? ANYONE STILL USE THAT? OH, WAIT, DROPBOX! IT'S THIS RECENT STARTUP FROM A FEW YEARS BACK THAT SYNCS FOLDERS BETWEEN COMPUTERS. YOU JUST NEED TO MAKE AN ACCOUNT, INSTALL THE-OH, HE JUST DROVE OVER TO YOUR HOUSE WITH A USB DRIVE? UH, COOL, THAT WORKS, TOO.

I LIKE HOW WE'VE HAD THE INTERNET FOR DECADES, YET "SENDING FILES" IS SOMETHING EARLY ADOPTERS ARE STILL FIGURING OUT HOW TO DO.

## Sneakernet

Never underestimate the bandwidth of a station wagon full of tapes hurtling down the highway.


-Andrew Tanenbaum, 1981

The bandwith of the Internet will surpass FedEx in 2040

https://what-if.xkcd.com/31/

## Trucks: AWS Snowmobile <a href="https://aws.amazon.com/snowmobile/">https://aws.amazon.com/snowmobile/</a>

A shipping container that can hold up to 100 petabytes of data — that's 20 billion iPhone photos. Even with very fast internet speeds, 100 petabytes would take decades to upload to the internet. Trucking that data across the country would take only a matter of days.



How else could you move big datasets?

**Pigeons** 

Sneakernet

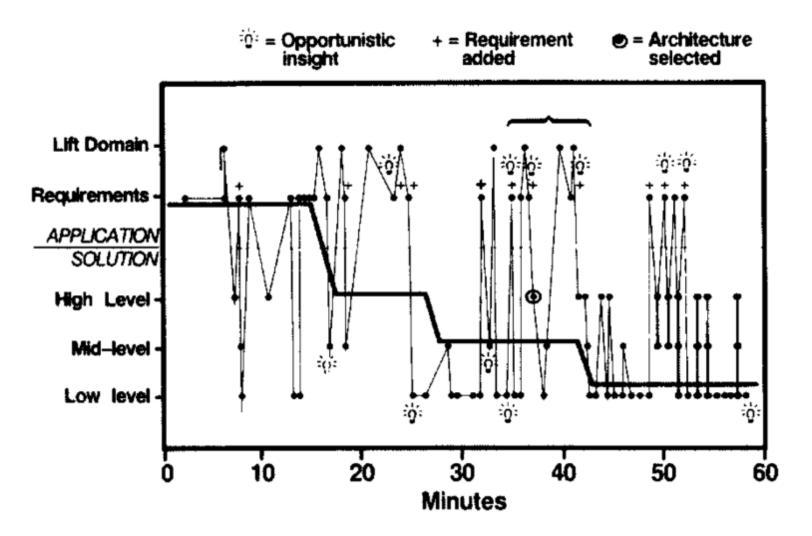
**Trucks** 

Any other ideas?

## Using design spaces to compare designs

| Road System                          |    |    | Traffic Signals                                     |
|--------------------------------------|----|----|-----------------------------------------------------|
| High-level organization              |    |    | Place in hierarchy                                  |
| ## Intersections                     | AD |    | ## Belong to roads AD                               |
|                                      |    |    | ## Belong to intersections IN                       |
| ## Network                           | AD | IN | ## Belong to approaches,                            |
| Intersections                        |    |    | which connect roads to ints MB                      |
| ## Collection of signals             | IN |    | Safety                                              |
| ## Signals and sensors in approaches | MB |    | ## Independent lights with safety checks            |
| ## Have roads (with lights and cars) | AD |    | ##Controller checks dynamically AD IN               |
| Roads                                |    |    | ## UI checks at definition time MB                  |
| Lanes                                |    |    | ## One set per intersection, selected from safe set |
|                                      |    |    | Relations among intersections                       |
| ## Lanes, with signal per lane       | AD | IN | ## Independent AD                                   |
| Throughput                           |    |    | ## <mark>Synchronized</mark> IN MB                  |
| <mark>Capacity</mark>                | AD |    | Setting timing                                      |
| Latency                              | IN | MB | ## System sets timing AD IN MB                      |
| Connection of roads to intersections |    |    | ## Students set timing MB                           |
| ## Intersections have queues (roads) | AD |    | Sensors                                             |
| ## Lights and sensors in approaches  | MB |    | ## Immediately advance on arrival IN                |
| ## Unspecified or unclear            | IN |    | ## Wait to synchronize                              |
| ## Simulator handles interaction     |    |    |                                                     |

## Using design spaces to capture domain knowledge


| Constituent parts                   |                         | Control issues                                |               | D ata issues       |                 |               |                 | Control/data interaction |                 | Type of              |                         |                              |
|-------------------------------------|-------------------------|-----------------------------------------------|---------------|--------------------|-----------------|---------------|-----------------|--------------------------|-----------------|----------------------|-------------------------|------------------------------|
| Style                               | Components              | Connectors                                    | Topo-<br>logy | Synch-<br>ronicity | Binding<br>time | Topo-<br>logy | Contin-<br>uity | M ode                    | Binding<br>time | Isomorphic<br>shapes | Flow<br>directions      | reasoning                    |
| Data-centered reposi                | itory styles: Style     | s dominated by a c                            | complex cen   | tral data sto      | re, manipula    | ted by indep  | oendent com     | putations                |                 |                      |                         | Data integrity               |
| Transactional database [Be90, Sp87] | memory, computations    | trans. streams<br>(queries)                   | star          | asynch, opp        | w               | star          | spor lvol       | shared,<br>passed        | w               | possibly             | if isomorphic, opposite | ACID <sup>5</sup> properties |
| •Client/server                      | managers, computations  | transaction opns<br>with history <sup>3</sup> | star          | asynch.            | w, c, r         | star          | spor lvol       | passed                   | w, c, r         | yes                  | opposite                |                              |
| Blackboard [Ni86]                   | memory, computations    | direct access                                 | star          | asynch,<br>opp     | w               | star          | spor lvol       | shared,<br>meast         | w               | no                   | n/a                     | convergence                  |
| Modern compiler<br>[SG96]           | memory,<br>computations | procedure call                                | star          | seq                | w               | star          | spor lvol       | shared                   | w               | no                   | n/a                     | invariants on parse tree     |

| Key to column entries |                                                                                                                                      |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Topology              | hier (hierarchical), arb (arbitrary), star, linear (one-way), fixed (determined by style)                                            |  |  |
| Synchronicity         | seq (sequential, one thread of control), ls/par (lockstep parallel), synch (synchronous), asynch (asynchronous), opp (opportunistic) |  |  |
| Binding time          | w (write-timethat is, in source code), c (compile-time), i (invocation-time), r (run-time)                                           |  |  |
| Continuity            | spor (sporadic), cont (continuous), hvol (high-volume), lvol (low-volume)                                                            |  |  |
| Mode                  | shared, passed, bdcast (broadcast), mcast (multicast), ci/co (copy-in/copy-out)                                                      |  |  |

## Using design spaces to recommend design choices

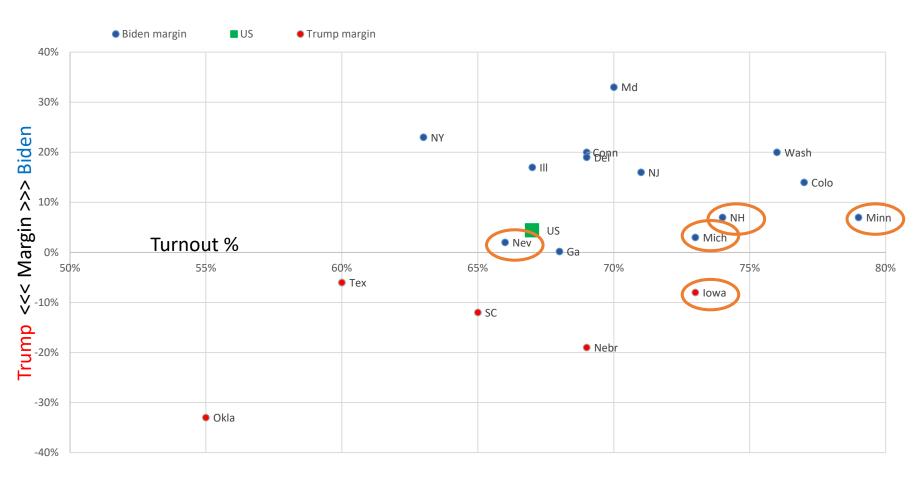
- Functional dimensions. These represent the system requirements that are significant in choosing a structure.
  - (a) External requirements. This group includes requirements of the particular applications, users, and I/O devices, as well as constraints imposed by the surrounding computer system.
  - (b) Basic interactive behavior. This group includes the key decisions about user interface behavior that fundamentally influence internal structure.
  - (c) Practical considerations. This group covers development cost considerations; primarily, the required degree of adaptability of the system.
- 2. Structural dimensions. These represent the design alternatives available to satisfy system requirements.
  - (a) Division of functions and knowledge between modules. This group considers how system functions are divided into modules, the interfaces between modules, and the information contained within each module.
  - (b) Representation issues. This group considers the representations used for user-interface-related data, including both actual application data (input and output values) and meta-data such as the definition of the user interface.
  - (c) Control flow, communication, and synchronization issues. This group considers the dynamic behavior of the user interface code.

## Using design spaces for evolving understanding of task



Guindon, R. Designing the Design Process: Exploiting Opportunistic Thoughts. Human-Computer Interaction, 5, 305-344. doi: 10.1207/s15327051hci0502&3\_6

Bill Curtis. Insights from empirical studies of the software design process. Future Generation Computer Systems, Volume 7, Issues 2–3, 1992, pp 139-149, ISSN 0167-739X, doi: 10.1016/0167-739X(92)90002-S


## Using design spaces for tightly coupled decisions

In US elections, which five states should have early primaries?

18 states applied to be early; there 8,568 sets of five. What factors should be considered?

https://www.washingtonpost.com/politics/interactive/2023/democratic-primary-calendar-builder-tool/

#### Turnout % vs margin



Designing involves considering multiple alternatives and choosing the one that best fits the client's needs.

Design spaces help to organize design alternatives and the dependencies among the choices so the designer can analyze, predict, make tradeoffs, understand dependencies.

The designer's principal responsibility is to understand the client's needs and find solutions that satisfy those needs. Design spaces, like other tools and techniques, are a means to that end, not an end in themselves.

#### Exit ticket

Your grandparents have smartphones but no home computer. How would you send them each of the following? Why?

greetings on their 40<sup>th</sup> anniversary (what if you just remembered it's today?)

a photo of you winning the CMU Mobot competition

the 824 photos you took on your trip home over the holiday