17-423/723:
Software System Design

Designing Interface
Specifications
Jan 28, 2026

Logistics

 HW1 due today
* Project teams announced
* M1 released later today

Learning Goals

* Describe the role and importance of an interface specification
* Describe the structure and meaning of a specification

* Describe different dimensions to consider while designing a
specification

Examples & figures based on htips://ocw.mit.edu/ans7870/6/6.005/s16/

https://ocw.mit.edu/ans7870/6/6.005/s16/

Interface Specifications

Specification

* A statement of a desired behavior or quality attribute of a
software system

* Functional specification
* “The scheduling system must provide a way for the patient to
modify an existing appointment”
* Quality attribute specification
* “The system must be able to handle additional 5000 users without
a loss of latency” (scalability)
 Interface specification

* Describes how a component interacts with its clients through one
or more services that it provides

e Today’s focus!

Interface Specification

_ client implementor
e Contract between a client and a _
component
* For clients: npL
* Describes what a client needs to know
to use the component computation

* Describes what is expected as the
output, given an input

* Hides implementation details

* For implementors: output

» Describes implementation tasks to be
fulfilled by developers (or LLMs)

* Hides possible uses of the component
by clients

Interface Specifications in Practice

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP Java Collections API

PREV CLASS NEXT CLASS FRAMES NO FRAMES ALL CLASSES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

compactl, compact2, compact3 Method Summary

java.util |
J AU RS CEES] Instance Methods | Concrete Methods

CIaSS HaShset< E> Modifier and Type Method and Description

boolean add (E e)

Java. la ng'ObJeCt Adds the specified element to this set if it is not already present.

java.util.AbstractCollection<E>

java.util.AbstractSet<E> void clear()
java.util.HashSet<E> Removes all of the elements from this set.
Object clone()

Returns a shallow copy of this HashSet instance: the elements theq

boolean contains(Object o)
Returns true if this set contains the specified element.

boolean isEmpty()
Returns true if this set contains no elements.

Iterator<E> iterator()
Returns an iterator over the elements in this set.

Interface Specifications in Practice

def add(numl, num2):

Python Docstrings

Add up two integer numbers.

This function simply wraps the "+ ° operator, and does not
do anything interesting, except for illustrating what
the docstring of a very simple function looks like.

Parameters

numl : int

First number to add.
num2 : int

Second number to add.

Returns

The sum of ““numl™" and ~“num2 .
See Also
subtract : Subtract one integer from another.
Examples

>>> add(2, 2)

4

>>> add(25, 0)
25

>>> add (10, -10)
0

Interface Specifications in Practice

,
Swag g e r PetSto re sto F@ Access to Petstore orders

[Base URL: petstore.swagger.io/v2]
https://petstore.swagger.io/v2/swagger.json

/store/inventory Returns petinventories by status

Im

This is a sample server Petstore server. You can find out more about Swagger

/store/order Place an order for a pet

Parameters
REST APID
body * “?“"*® order placed for purchasing the pet
object
(body) Example Value Model

ll.idll: 5
"petId": 0,
"quantity": 0,

"shipDate": "2025-02-03T21:44:39.405Z",
"status": "placed",
"complete": true

Parameter content type

application/json

Specification: Elements

» Each specification of a
function is associated with
pre- & post-conditions

* Pre-condition

* What the component expects
from the client, expressed as a
condition over the function input
and/or component state satisfies postcondition

e Post-condition output

* What the component promises
to deliver, as a condition over
the function output and/or
component state

client implementor

—

input
satisfies precondition

computation

Specification: Meaning

* Pre-condition = Post-condition
(i.e., logical implication)

* If the client satisfies the pre-
condition, the component promises
to satisfy post-condition

client implementor

—

input
satisfies precondition

@ computation

satisfies postcondition
output

Specification: Meaning

* Pre-condition = Post-condition
(i.e., logical implication)

* If the client satisfies the pre-
condition, the component promises
to satisfy post-condition

 But if the client violates the pre-
condition, the component can
behave in an arbitrary way!
* Logically, “false implies anything”
* Q. Why is this reasonable?

client implementor

—

input

violates precondition

‘ computation

behavior uncertain

output

Example: Specifying Array Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr][i] = val

* A specification of the “find” function

* By convention, we will label pre- & post-conditions as
requires and effects, respectively

*Meaning: If "val” occurs exactly once in "arr’, then it returns
index “i” such that arr|i] = val

« If “val” occurs zero times or more than once, then “find” may return
anything

Specification as an Implementation Set

o A specification defines a set of possible implementations

o Given a pre- & post-condition, any implementation that fulfills the
requirement “pre-condition => post-condition” is a valid
iImplementation of the specification

programs that satisfy

set of all programs “pre => post”

Example: Implementing Array Find

static int find(int[] arr, int val) {
for (inti = 0; i < arr.length; i++) {
iIf (arr[i] == val) return i;
}

return arr.length;

}

static int find(int[] arr, int val) {
for (inti = arrlength -1 ;i>=0; i--) {
iIf (arr[i] == val) return i;

} _ Q. Do these functions
return -1;
\ behave the same or
differently?

Example: Specifying Array Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr][i] = val

* A specification of the “find” function

* The two versions of “find” are both valid implementations
of this specification!
* As far as the client is concerned, they have the same behavior

* One could be substituted with the other, without affecting the
code of the client that relies on this specification

Specification Must Hide Unnecessary Details

* What can appear inside the pre- & | ,
post-conditions? client implementor

 Recommended practice =

* Pre-conditions should only mention
input parameters of a function (Q.

local

Why not output?) variables
» Post-conditions should only mention Implementation
the input & output parameters details

* They should avoid mentioning
hidden/private fields in the
component (Q. Why?)

* If necessary, instead refer to
publicly visible fields/functions

private
fields

Specification Must Hide Unnecessary Details

public class Account {
private String accountlD;
orivate int currBalance; // in cents

public void deposit(int dollars)
requires: nothing
effects: increase currBalance by (dollars)*100
{ ... /] implementation }

}

* Q. What’s undesirable about this specification of “deposit”?
* Q. How would you improve this?

How do we design a "good” specification?

Factors to Consider in Interface Specifications

* Deterministic vs. under-determined
* Declarative vs. operational

« Strong vs. weak

* General vs. restrictive

Deterministic vs. Under-determined

* A specification of a function is deterministic if, for any given
iInput, it allows exactly one possible output.

* A specification is under-determined if, for some input, it allows
multiple possible outputs.

Recall: Specification of Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr][i] = val

* An example of a deterministic specification
* Only one return value is possible for any given input

Recall: Specification of Find

static int find(int[] arr, int val)
requires: val occurs exactly once in arr
effects: returns index i such that arr][i] = val

Spéc ver1

static int find(int[] arr, int val)
requires: val occurs in arr Spec ver2
effects: returns index i such that arr][i] = val |

-Q1. Is the second specification (ver2) deterministic or
under-determined? Why?

-Q2. Which of the two would you prefer? As a client”? As an
iImplementor?

Recall: Implementations of Find

static int find(int[] arr, int val) {
for (inti = 0; i < arr.length; i++) {
iIf (arr[i] == val) return i;

) These are both valid
return arr.length; implementations of
} Spec ver1 & ver2!

static int find(int[] arr, int val) {
for (inti = arrlength -1 ;i>=0; i--) {
if (arri] == val) return i;
}

return -1;

}

Deterministic vs. Under-determined

* A specification of a function is deterministic if, for any given input,
it allows exactly one possible output.

* A specification is under-determined if, for some input, it allows
multiple possible outputs.

* An under-determined specification is ambiguous and can result in
behaviors that are “surprising” to the client
 The client can’t rely on what output the function will return

*|In general, deterministic specifications are preferable

* Design consideration: For a given input, are multiple outputs
possible? If so, how do | modify the pre- or post-condition to make
it deterministic?

Declarative vs. Operational

* An operational specification describes how a function achieves
its post-condition through a series of steps

* A declarative specification describes what a function achieves
without saying how

Declarative vs. Operational: Example

static int find(int[] arr, int val)
requires: val occurs in arr
effects: examines a[0],a[1],..., in turn and returns
the index of the 1%t element equal to val

* An example of an operational specification
« Q. What is undesirable about this specification?

Declarative vs. Operational: Example

static int find(int[] arr, int val)
requires: val occurs in arr
effects: examines a[0],a[1],..., in turn and returns
the index of the 1%t element equal to val

* An example of an operational specification

« Q. What is undesirable about this specification?
» Expose details about how the function is implemented internally
« Unnecessarily constrains the set of possible implementations

Declarative vs. Operational: Example

static int find(int[] arr, int val)
requires: val occurs in arr
effects: examines a[0],a[1],..., in turn and returns
the index of the 1%t element equal to val

Operational

static int find(int[] arr, int val)
requires: val occurs in arr Declarative
effects: returns index i such that arr][i] = val |

 Declarative specifications tend to:
* Be more concise, easier to understand
* Allow a larger set of implementations
» Give more flexibility to the implementor!

Declarative vs. Operational

* An operational specification describes how a function achieves
its post-condition through a series of steps

* A declarative specification describes what a function achieves
without saying how

* Operational specifications tend to:
* Expose details about how the function is implemented internally
« Unnecessarily constrains the set of possible implementations

* Declarative specifications are preferable

*Design consideration: Is the specification describing “how”
something is done? If so, can we rewrite it to say only "what” it
does”?

Strong vs. Weak

*Let S1 and S2 be specifications with the same pre-condition

*S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

* (Mathematically, S1's post-condition is logically stronger than
S2’s post-condition)

Strong vs. Weak: Example

static int find(int[] a, int val) |
requires: val occurs at least once in a Spec ver1
effects: returns index i such that ali] = val |

static int find(int[] a, int val) Spec ver2

requires: val occurs at least once in a
effects: returns lowest index i such that a[i] = val ‘

* Spec ver?2 is stronger than ver1, since it provides stronger
guarantees about the output

* How strong is “strong enough™?
* Depends on the client’s requirements
« To fulfill their own tasks, does the client rely on the index being the lowest?

Strong vs. Weak: Example #2

static int find(int[] a, int val) |

requires: nothing Spec ver3
effects: returns index i such that ali] = val |

* Q. What is wrong with ver3?

* The specification is too strong. In fact, there is no possible valid
implementation for this specification!

Strong vs. Weak: Example #2

static int find(int[] a, int val) |

requires: nothing Spec ver3
effects: returns index i such that ali] = val

static int find(int[] a, int val)
requires: nothing
effects: if val doesn’t occur in a, returns -1
else returns index i such that a[i] = val

Spec ver4

» Specification should be as weak as possible

» Stronger specifications allow a smaller set of implementations & are harder
to implement

» Weaker specifications give more flexibility to the implementor

Strong vs. Weak

*Let S1 and S2 be specifications with the same pre-condition

*S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

* A specification should be strong enough to support the needs of
the client

* At the same time, a specification should be as weak as
possible, to provide as flexibility to the implementor

* Design consideration: Is the specification providing more
guarantees than needed? If so, how much can we relax them
without breaking the client’'s code?

General vs. Restrictive

et S1 and S2 be specifications with the same post-condition

*S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

* (Mathematically, S1’'s pre-condition is logically weaker than
S2’s pre-condition)

General vs. Restrictive: Example

static int find(int[] a, int val) |
requires: val occurs exactly once in a Spec ver1
effects: returns index i such that ali] = val

static int find(int[] a, int val)
requires: val occurs in a Spec ver2
effects: returns index i such that a[i] = val |

* Spec ver2 is more general than ver1, since it accepts a larger
set of inputs

* In ver1, the client must do more work to ensure that “val” occurs
exactly once

*|n general, a more general specification is preferable, as it puts
less burden on the client

General vs. Restrictive: Example #2

static int find(int[] a, int val) ‘
requires: nothing
effects: if val doesn’t occur in a, returns -1 Spec ver3
else returns index i such that ali] = val ‘

* Spec ver3 is most general (for the given post-condition)

* No pre-condition (“nothing”), so it accepts any inputs; no burden
on the client!

Q. Is this always desirable?

General vs. Restrictive: Another Example

static int binarySearch(int[] a, int val)
requires: nothing
effects: if a is not sorted or val doesn’t occur in a, returns -1
else returns index i such that ali] = val

* A general specification shifts the burden onto the component to
validate the input
* This can be undesirable, as it may add more complexity or

performance overhead to the implementation
Q. Why is this the case for the above example?

* Sometimes, it's necessary to make the function more restrictive
by strengthening the pre-condition

General vs. Restrictive

et S1 and S2 be specifications with the same post-condition

*S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

* A specification should be as general as possible
* A pre-condition places burden on the client to satisfy it
* Less restrictive it is, more applicable the function is

* A specification should be restrictive when necessary

*Design consideration: \What needs to be checked about the
input for a successful operation? If the check is too expensive,
can we restrict the pre-condition to rule out bad inputs?

Factors in Designing Specifications

* Deterministic vs. under-determined
* Declarative vs. operational

« Strong vs. weak

* General vs. restrictive

"‘Smells” for bad interface specifications

» Mentions private component details (i.e., breaking the firewall)
* Multiple possible outputs for a single input (under-determined)
« Step-by-step algorithmic descriptions (operational specs)

» Under-specified edge cases in output (too weak)

 Overly stringent output requirements (too strong)

* Overly stringent input requirements (too restrictive)

* Missing pre-condition that make post-condition impossible or
inefficient to satisfy (too general)

Exercises: Are these good specifications?

static Set union(Set s1, Set s2)
requires: “s1” and “s2” are non-empty
effects: returns a new set that contains the
elements from both “s1” and “s2”

static List sort(List I)
requires: nothing
effects: returns a new list that results from
applying merge sort to I’

static String read(String filepath)
requires: filepath is not null
effects: opens the file at “filepath” and returns
the content of the file as a string

Interface Specifications: Takeaway

* A specification defines a contract between a component and
its clients

* A specification defines a set of valid possible implementations

* A specifications should be deterministic rather than
under-determined

* A specification should be declarative rather than operational

* A specification should be sufficiently strong, while being as
weak as possible

* A specification should be as general as possible, while being
restrictive when necessary

Summary

* Exit ticket!

