
17-423/723:
Software System Design

Designing Interface
Specifications
Jan 28, 2026

2

Logistics
• HW1 due today
• Project teams announced
• M1 released later today

3

Learning Goals
• Describe the role and importance of an interface specification
• Describe the structure and meaning of a specification
• Describe different dimensions to consider while designing a
specification

Examples & figures based on https://ocw.mit.edu/ans7870/6/6.005/s16/

https://ocw.mit.edu/ans7870/6/6.005/s16/

4

Interface Specifications

5

Specification
• A statement of a desired behavior or quality attribute of a
software system

• Functional specification
• “The scheduling system must provide a way for the patient to

modify an existing appointment”
• Quality attribute specification

• “The system must be able to handle additional 5000 users without
a loss of latency” (scalability)

• Interface specification
• Describes how a component interacts with its clients through one

or more services that it provides
• Today’s focus!

6

Interface Specification
• Contract between a client and a
component

• For clients:
• Describes what a client needs to know

to use the component
• Describes what is expected as the

output, given an input
• Hides implementation details

• For implementors:
• Describes implementation tasks to be

fulfilled by developers (or LLMs)
• Hides possible uses of the component

by clients

7

Interface Specifications in Practice
Java Collections API

8

Interface Specifications in Practice
Python Docstrings

9

Interface Specifications in Practice

REST API Doc

10

Specification: Elements

satisfies precondition

satisfies postcondition

• Each specification of a
function is associated with
pre- & post-conditions

• Pre-condition
• What the component expects

from the client, expressed as a
condition over the function input
and/or component state

• Post-condition
• What the component promises

to deliver, as a condition over
the function output and/or
component state

11

Specification: Meaning

satisfies precondition

satisfies postcondition

12

Specification: Meaning

violates precondition

behavior uncertain

13

Example: Specifying Array Find

• A specification of the “find” function
• By convention, we will label pre- & post-conditions as
requires and effects, respectively

• Meaning: If “val” occurs exactly once in “arr”, then it returns
index “i” such that arr[i] = val

• If “val” occurs zero times or more than once, then “find” may return
anything

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

14

Specification as an Implementation Set
● A specification defines a set of possible implementations
● Given a pre- & post-condition, any implementation that fulfills the

requirement “pre-condition => post-condition” is a valid
implementation of the specification

set of all programs
programs that satisfy
“pre => post”

15

Example: Implementing Array Find
static int find(int[] arr, int val) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == val) return i;
 }
 return arr.length;
}

static int find(int[] arr, int val) {
 for (int i = arr.length -1 ; i >= 0; i--) {
 if (arr[i] == val) return i;
 }
 return -1;
}

Q. Do these functions
behave the same or
differently?

16

Example: Specifying Array Find

• A specification of the “find” function
• The two versions of “find” are both valid implementations
of this specification!

• As far as the client is concerned, they have the same behavior
• One could be substituted with the other, without affecting the

code of the client that relies on this specification

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

17

Specification Must Hide Unnecessary Details
• What can appear inside the pre- &
post-conditions?

• Recommended practice
• Pre-conditions should only mention

input parameters of a function (Q.
Why not output?)

• Post-conditions should only mention
the input & output parameters

• They should avoid mentioning
hidden/private fields in the
component (Q. Why?)

• If necessary, instead refer to
publicly visible fields/functions

18

Specification Must Hide Unnecessary Details

• Q. What’s undesirable about this specification of “deposit”?
• Q. How would you improve this?

public class Account {
 private String accountID;
 private int currBalance; // in cents

 public void deposit(int dollars)
 requires: nothing
 effects: increase currBalance by (dollars)*100
{ … // implementation }

}

19

How do we design a “good” specification?

20

Factors to Consider in Interface Specifications
• Deterministic vs. under-determined
• Declarative vs. operational
• Strong vs. weak
• General vs. restrictive

21

Deterministic vs. Under-determined
• A specification of a function is deterministic if, for any given
input, it allows exactly one possible output.

• A specification is under-determined if, for some input, it allows
multiple possible outputs.

22

Recall: Specification of Find

• An example of a deterministic specification
• Only one return value is possible for any given input

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

23

Recall: Specification of Find

• Q1. Is the second specification (ver2) deterministic or
under-determined? Why?

• Q2. Which of the two would you prefer? As a client? As an
implementor?

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: returns index i such that arr[i] = val

Spec ver1

Spec ver2

24

Recall: Implementations of Find
static int find(int[] arr, int val) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == val) return i;
 }
 return arr.length;
}

static int find(int[] arr, int val) {
 for (int i = arr.length -1 ; i >= 0; i--) {
 if (arr[i] == val) return i;
 }
 return -1;
}

These are both valid
implementations of
Spec ver1 & ver2!

25

Deterministic vs. Under-determined
• A specification of a function is deterministic if, for any given input,
it allows exactly one possible output.

• A specification is under-determined if, for some input, it allows
multiple possible outputs.

• An under-determined specification is ambiguous and can result in
behaviors that are “surprising” to the client

• The client can’t rely on what output the function will return
• In general, deterministic specifications are preferable
• Design consideration: For a given input, are multiple outputs
possible? If so, how do I modify the pre- or post-condition to make
it deterministic?

26

Declarative vs. Operational
• An operational specification describes how a function achieves
its post-condition through a series of steps

• A declarative specification describes what a function achieves
without saying how

27

Declarative vs. Operational: Example

• An example of an operational specification
• Q. What is undesirable about this specification?

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: examines a[0],a[1],…, in turn and returns

the index of the 1st element equal to val

28

Declarative vs. Operational: Example

• An example of an operational specification
• Q. What is undesirable about this specification?

• Expose details about how the function is implemented internally
• Unnecessarily constrains the set of possible implementations

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: examines a[0],a[1],…, in turn and returns

the index of the 1st element equal to val

29

Declarative vs. Operational: Example

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: examines a[0],a[1],…, in turn and returns

the index of the 1st element equal to val

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: returns index i such that arr[i] = val

Operational

Declarative

• Declarative specifications tend to:
• Be more concise, easier to understand
• Allow a larger set of implementations
• Give more flexibility to the implementor!

30

Declarative vs. Operational
• An operational specification describes how a function achieves
its post-condition through a series of steps

• A declarative specification describes what a function achieves
without saying how

• Operational specifications tend to:
• Expose details about how the function is implemented internally
• Unnecessarily constrains the set of possible implementations

• Declarative specifications are preferable
• Design consideration: Is the specification describing “how”
something is done? If so, can we rewrite it to say only “what” it
does?

31

Strong vs. Weak
• Let S1 and S2 be specifications with the same pre-condition
• S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

• (Mathematically, S1’s post-condition is logically stronger than
S2’s post-condition)

32

Strong vs. Weak: Example

• Spec ver2 is stronger than ver1, since it provides stronger
guarantees about the output

• How strong is “strong enough”?
• Depends on the client’s requirements
• To fulfill their own tasks, does the client rely on the index being the lowest?

static int find(int[] a, int val)
 requires: val occurs at least once in a
 effects: returns index i such that a[i] = val

static int find(int[] a, int val)
 requires: val occurs at least once in a
 effects: returns lowest index i such that a[i] = val

Spec ver1

Spec ver2

33

Strong vs. Weak: Example #2
static int find(int[] a, int val)
 requires: nothing
 effects: returns index i such that a[i] = val

Spec ver3

• Q. What is wrong with ver3?
• The specification is too strong. In fact, there is no possible valid

implementation for this specification!

34

Strong vs. Weak: Example #2

• Specification should be as weak as possible
• Stronger specifications allow a smaller set of implementations & are harder

to implement
• Weaker specifications give more flexibility to the implementor

static int find(int[] a, int val)
 requires: nothing
 effects: returns index i such that a[i] = val

Spec ver3

static int find(int[] a, int val)
 requires: nothing
 effects: if val doesn’t occur in a, returns -1

else returns index i such that a[i] = val

Spec ver4

35

Strong vs. Weak
• Let S1 and S2 be specifications with the same pre-condition
• S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

• A specification should be strong enough to support the needs of
the client

• At the same time, a specification should be as weak as
possible, to provide as flexibility to the implementor

• Design consideration: Is the specification providing more
guarantees than needed? If so, how much can we relax them
without breaking the client’s code?

36

General vs. Restrictive
• Let S1 and S2 be specifications with the same post-condition
• S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

• (Mathematically, S1’s pre-condition is logically weaker than
S2’s pre-condition)

37

General vs. Restrictive: Example

• Spec ver2 is more general than ver1, since it accepts a larger
set of inputs

• In ver1, the client must do more work to ensure that “val” occurs
exactly once

• In general, a more general specification is preferable, as it puts
less burden on the client

static int find(int[] a, int val)
 requires: val occurs exactly once in a
 effects: returns index i such that a[i] = val

static int find(int[] a, int val)
 requires: val occurs in a
 effects: returns index i such that a[i] = val

Spec ver1

Spec ver2

38

General vs. Restrictive: Example #2

• Spec ver3 is most general (for the given post-condition)
• No pre-condition (“nothing”), so it accepts any inputs; no burden
on the client!

• Q. Is this always desirable?

static int find(int[] a, int val)
 requires: nothing
 effects: if val doesn’t occur in a, returns -1

else returns index i such that a[i] = val
Spec ver3

39

General vs. Restrictive: Another Example

• A general specification shifts the burden onto the component to
validate the input

• This can be undesirable, as it may add more complexity or
performance overhead to the implementation

• Q. Why is this the case for the above example?
• Sometimes, it’s necessary to make the function more restrictive
by strengthening the pre-condition

static int binarySearch(int[] a, int val)
 requires: nothing
 effects: if a is not sorted or val doesn’t occur in a, returns -1

else returns index i such that a[i] = val

40

General vs. Restrictive
• Let S1 and S2 be specifications with the same post-condition
• S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

• A specification should be as general as possible
• A pre-condition places burden on the client to satisfy it
• Less restrictive it is, more applicable the function is

• A specification should be restrictive when necessary
• Design consideration: What needs to be checked about the
input for a successful operation? If the check is too expensive,
can we restrict the pre-condition to rule out bad inputs?

41

Factors in Designing Specifications
• Deterministic vs. under-determined
• Declarative vs. operational
• Strong vs. weak
• General vs. restrictive

42

“Smells” for bad interface specifications
• Mentions private component details (i.e., breaking the firewall)
• Multiple possible outputs for a single input (under-determined)
• Step-by-step algorithmic descriptions (operational specs)
• Under-specified edge cases in output (too weak)
• Overly stringent output requirements (too strong)
• Overly stringent input requirements (too restrictive)
• Missing pre-condition that make post-condition impossible or

inefficient to satisfy (too general)

43

Exercises: Are these good specifications?
static Set union(Set s1, Set s2)
 requires: “s1” and “s2” are non-empty
 effects: returns a new set that contains the

elements from both “s1” and “s2”

static List sort(List l)
 requires: nothing
 effects: returns a new list that results from

 applying merge sort to “l”

static String read(String filepath)
 requires: filepath is not null
 effects: opens the file at “filepath” and returns

 the content of the file as a string

44

Interface Specifications: Takeaway
• A specification defines a contract between a component and
its clients

• A specification defines a set of valid possible implementations
• A specifications should be deterministic rather than
under-determined

• A specification should be declarative rather than operational
• A specification should be sufficiently strong, while being as
weak as possible

• A specification should be as general as possible, while being
restrictive when necessary

45

Summary
• Exit ticket!

