
17-423/723:
Designing Large-scale
Software Systems

Design for Change
Feb 3, 2025

2

Leaning Goals

• Apply principles for improving modularity: Single responsibility,
interface segregation, and dependency inversion

• Describe the benefits & limitations of each principle

• Evaluate possible costs of modularity and its impact on other quality
attributes

3

Last Class

• Changeability

• Information hiding

• Data abstraction

• Interface abstraction

• Encapsulation

4

Recall: Changeability

• A measure of the amount of effort involved in making a change to a
system

• Usually qualitative (i.e., yes/no), but sometimes quantified in terms of
numerical metrics (e.g., lines of code changed)

• Quality attribute specifications – examples:
• “A new publisher can be added without having to change any of the

existing subscribers”
• “New types of stocks can be added without changing the format of how

each stock is displayed”
• “Improving the performance of the C++ compiler does not affect the

parser”
• “Adding a new type of sensor in a self-driving vehicle requires changing

only the image processing module”

5

Related Concepts

• Modularity
• Degree to which different parts of the system can be substituted with

alternative parts without affecting the rest of the system

• Closely related to changeability: Modularity supports changeability!

6

Dependency

• Degree to which one component relies on another component to
fulfill its responsibility

• To fulfill its responsibility, component A depends on B through
connection X

• If B changes in a way that affects X, A may need to change to
continue fulfilling its responsibility

• Information hiding: Hide secrets (design decisions) that are likely to
change from other components

A B
X

7

Today’s Class

• Other principles for improving the modularity (and changeability) of
the system

• SOLID principles

• Single-responsibility principle

• Open-closed principle

• Liskov substitution principle

• Interface segregation principle

• Dependency inversion principle

8

A word of caution…

• People tend to get attached to
trendy/popular ideas

• SOLID encodes good design
practices, but are NOT a solution to
every design problem

• Even good ideas, when applied
blindly, can result in harmful outcome

• Think of these as tools! Ultimately, you
need to apply your own judgement on
when these are helpful or not

9

Single Responsibility Principle

10

Single Responsibility Principle (SRP)

11

Single Responsibility Principle (SRP)

• Each component should be responsible for fulling a single
purpose only

• Purpose: A unit of functionality, a use case, or a quality attribute

• A purpose is associated with one or more design decision(s)

• Corollary: A component should not be designed to serve multiple
purposes

• Such a component may contain multiple secrets (i.e., design decisions)
for different purposes

• This encourages those secrets to become intermingled & dependent
on each other; harder to change independently!

• Such a component should be separated into multiple components

12

Recall: Stock Tracker App

• Get a list of stock quotes (prices) from an external source (e.g., Google)

• Produce output in HTML or RTF format

• Put the quote in bold if the change since the opening is > 1%

Decoupling and Interfaces

Rob Miller

Fall 2008

© Robert Miller 2008

Quote Generation Problem
problem

¾obtain stock quotes for some ticker symbols

¾produce both RTF and HTML output

¾put the ask price in bold if the change since open is ≥ ± 1%
¾put the ask price in bold if the change since open is ≥ ± 1%

Today’s Topics
principles and concepts of system design

¾modularity

¾decoupling

¾¾information hiding
information hiding

a new notation

¾module dependency diagram

case study: designing a stock quoter

¾using interfaces to decouple modules

© Robert Miller 2007

Design Tasks
tasks, for each ticker symbol:

¾download quote information from web site

¾parse to extract stock quotes

¾¾write to file in RTF or HTML format
write to file in RTF or HTML format

parsing

¾minimize parsing by choosing a site with a simple format

¾Yahoo offers stock quotes in comma-separated-values (CSV) format

example

¾http://quote.yahoo.com/d/quotes.csv?s=aapl&f=noa

¾¾rreturns the string “APPLE INC”,130.75,125.20
eturns the string “APPLE INC” 130 75 125 20

© Robert Miller 2007
© Robert Miller 2007

1

Decoupling and Interfaces

Rob Miller Fall 2008

© Robert Miller 2008

Quote Generation Problem
problem ¾obtain stock quotes for some ticker symbols

¾produce both RTF and HTML output

¾put the ask price in bold if the change since open is ≥ ± 1%
¾put the ask price in bold if the change since open is ≥ ± 1%

Today’s Topics
principles and concepts of system design

¾modularity

¾decoupling

¾¾information hiding
information hiding

a new notation

¾module dependency diagram

case study: designing a stock quoter

¾using interfaces to decouple modules © Robert Miller 2007

Design Tasks
tasks, for each ticker symbol:

¾download quote information from web site

¾parse to extract stock quotes

¾¾write to file in RTF or HTML format
write to file in RTF or HTML format

parsing ¾minimize parsing by choosing a site with a simple format

¾Yahoo offers stock quotes in comma-separated-values (CSV) format

example ¾http://quote.yahoo.com/d/quotes.csv?s=aapl&f=noa

¾¾rreturns the string “APPLE INC”,130.75,125.20
eturns the string “APPLE INC” 130 75 125 20

© Robert Miller 2007
© Robert Miller 2007

1

HTML

RTF

Based on an example by Daniel Jackson & Rob Miller

13

Stock Tracker: Violation of SRP?

• Stock Trakcer App: Fulfills requests from a client for a quote in a certain format

• RTF/HTML formatter: Get quote from Stock Quoter & generate output in the
right format

• Stock Quoter: Invoke Google API to get quote & return the result to Formatter

• Q. Does this design violate SRP?

Stock Quoter

Google

Stock API
RTF

Formatter

HTML

Formatter

Stock

Tracker App

Client App

obtainQuote,

getAsk…

/quotes.csv

genOutput

genOutput

getRTF

getHTML

14

Stock Tracker: Violation of SRP?

• Problem: HTML/RTF Formatters know (1) how to generate HTML/RTF
elements in different formats and (2) what should be bolded, underlined, etc.,

• (2) is a design decision that can be separated & hidden from components that
generate HTML/RTF!

Stock Quoter

Google

Stock API
RTF

Formatter

HTML

Formatter

Stock

Tracker App

Client App

obtainQuote,

getAsk…

/quotes.csv

genOutput

genOutput

getRTF

getHTML

15

Stock Tracker App: New Design

• HTML/RTF Generator: Writes & formats a given string using HTML/RTF tags

• Formatter: Encodes which part of the quote should be bolded, italicized

• Generators and Formatter now serve separate responsibilities!

Stock

Quoter

RTF

Generator

HTML

Generator

Stock

Tracker App

obtainQuote,

getAsk…

genOutput

write,

toggleBold… Generator

Interface

Quote

Formatter

implements

Google

Stock API
Client App

16

Single Responsibility Principle (SRP)

• Each component should be responsible for fulling a single
purpose only

• Benefits: Single-responsibility (SR) components

• Reduce dependency between design decisions; make it easier to
change them independently

• Are more reusable: Provide a distinct unit of purpose that can be
reused in other contexts

• Are easier to understand & test

• Q. Limitations or dangers of SRP?

17

Interface Segregation Principle

18

Interface Segregation Principle (ISP)

19

Interface Segregation Principle (ISP)

• An interface should not force clients to depend on unnecessary
details

• Interface pollution: A common issue that arises when an interface
grows & serves tasks for different types of clients

20

Example: ATM User Interface

• Different types of transactions require
different user interactions

• Some UI methods are only used by a
single transaction

• Q. What could go wrong here?

• Dependencies between transactions
through the interface!

• If a change in a transaction involves
changes to the UI, these could cause
changes in other transactions

• Q. What can we do to mitigate this
issue?

Example from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

21

Example: ATM User Interface

• An alternative design: Decompose
the bloated interface into multiple,
separate interfaces

• Benefits:

• Each interface serves one particular
type of client

• Each interface does not force the
client to depend on unnecessary
details

• Each interface (its client) can
change independently from other
interfaces

Example from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

+ RequestTransferAmt

22

Another Example: Stock Tracker

public class JSONGenerator implements Generator {

 public void open() throws FileNotFoundException { ... }

 ...}

}

Suppose we want to add a

new type of generator: JSON

Q. What can go wrong?

Q. How can we do better?

23

Interface Segregation Principle (ISP)

• An interface should not force clients to depend on unnecessary
details

• Interface pollution: A common issue that arises when an interface
grows & serves tasks for different types of clients

• Decompose the bloated interface into separate interfaces, each
exposing details that are needed only by a single client

• Q. What is the relationship between ISP and single
responsibility principle (SRP)?

24

Dependency Inversion Principle

25

Dependency Inversion Principle (DIP)

26

Dependency Inversion Principle (DIP)

• Idea: A “high-level” component
should not depend on a “low-level”
component

• High-level components (HC):
Responsible for the core application
logic and use cases

• Low-level components (LC): Services
or libraries that serve the core logic

High-level

Component

(HC)

Low-level

Component

(LC)

X

27

Dependency Inversion Principle (DIP)

• Invert the dependency from HC to LC
by introducing an intermediate
abstraction (e.g., an interface)

• Recall: Interface abstraction!

• Interface provides abstract operations
& data that are needed by HC

• HC & LC both depend this abstraction

• HC does not directly interact with LC

• Goal: When LC changes, minimize its
impact on HC

High-level

Component

(HC)

Low-level

Component

(LC)

implements

Service

InterfaceX

28

Dependency Inversion: Example

Notification

Service

Email

Sender

notifyUser

// High-level module
public class NotificationService {
 private EmailSender sender;
 public NotificationService(EmailSender sender) {
 this.sender = sender;
 }
 public void NotifyUser(String user, String message) {
 string fullMessage = $"To: {user}\nMessage: {message}";
 sender.SendMessage(user, fullMessage);
 }
}

// Low-level module
public class EmailSender {
 public void SendMessage(String user, String message) {
 // Implements sending an e-mail message to user
 }
}

29

Dependency Inversion: Example

Notification

Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {
 void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {
 private Messenger sender;
 public NotificationService(Messenger sender) {
 this.sender = sender;
 }
 public void NotifyUser(String user, String message) {
 string fullMessage = $"To: {user}\nMessage: {message}";
 sender.SendMessage(user, fullMessage);
 }
}
// Low-level module
public class EmailSender implements Messenger {
 public void SendMessage(string user, string message) {
 // Implements sending an e-mail message to user
 }
}

Messenger

(Interface)

implements

30

Dependency Inversion: Example

Notification

Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {
 void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {
 private Messenger sender;
 public NotificationService(Messenger sender) {
 this.sender = sender;
 }
 public void NotifyUser(String user, String message) {
 string fullMessage = $"To: {user}\nMessage: {message}";
 sender.SendMessage(user, fullMessage);
 }
}
// Low-level module
public class EmailSender implements Messenger {
 public void SendMessage(string user, string message) {
 // Implements sending an e-mail message to user
 }
}

Messenger

(Interface)

implements

31

Dependency Inversion: Example

Notification

Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {
 void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {
 private Messenger sender;
 public NotificationService(Messenger sender) {
 this.sender = sender;
 }
 public void NotifyUser(String user, String message) {
 string fullMessage = $"To: {user}\nMessage: {message}";
 sender.SendMessage(user, fullMessage);
 }
}
// Low-level module
public class SmsSender implements Messenger {
 public void SendMessage(string user, string message) {
 // Implements sending an SMS message to user
 }
}

Messenger

(Interface)

SMSSender

implements

32

Stock Tracker App: New Design

• Q. Does this design violate DIP?

Stock

Quoter

HTML

Generator

Stock

Tracker App

obtainQuote,

getAsk…

genOutput

write,

toggleBold…

RTFGenerator

Quote

Formatter

Google

Stock API
Client App

33

Stock Tracker App: New Design

• Generator interface: Hides the type of output file (HTML/RTF) from Formatter

• Formatter: Encodes which part of the quote should be bolded, italicized; does
not know anything about HTML/RTF!

• Formatter (high-level component) no longer depends on the generators (low-
level components)

Stock

Quoter

RTF

Generator

HTML

Generator

Stock

Tracker App

obtainQuote,

getAsk…

genOutput

write,

toggleBold… Generator

Interface

Quote

Formatter

implements

Google

Stock API
Client App

34

Dependency Inversion Principle (DIP)

• Invert the dependency from HC to LC
by introducing an intermediate
abstraction (e.g., an interface)

• HC & LC both depend this abstraction

• HC does not know anything about LC

• Goal: When LC changes, minimize its
impact on the high-level component

• Q. What assumption(s) is this
principle making? Do they hold in
practice?

High-level

Component

(HC)

Low-level

Component

(LC)

implements

Service

InterfaceX

35

Dependency Inversion in Practice

36

Traditional Layered Architecture

• Common 3-layer pattern for application
architecture

• Top-down dependency: Higher-level
components depend on lower-level ones

• Presentation layer: User facing components
(UI, APIs, command line…)

• Business layer: Implements the core
application logic

• Q. Potential downside (w.r.t. changeability?)

Presentation Layer

Business Layer

Data Layer
External

Services

37

Alternative Design: Hexagonal Architecture

• Inward dependency only: All
components depend on core business
logic (dependency inversion!)

• Adapter: An implementation of an
interact in the core logic

• Link between an external component &
the interface

• Input adapters: Allow users, external
actors, and client services to interact with
the core logic

• Output adapters: Wrappers for services
used by the core logic (e.g., database
engine)

38

Example: Netflix Architecture

• Many different data sources,
external services, tools

• Data about movies, production
dates, employees, shooting
locations (> 300 DB tables)

• Multiple protocols: gRPC,
JSON API, GraphQL…

• Challenge: Swap data sources
without affecting the core
business logic

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

39

Hexagonal Architecture at Netflix

• Entities: Business objects (e.g.,
Movie or Shooting Location);
knows nothing about how they are
stored

• Repositories: Interfaces to
create, retrieve, and modify
entities from a data source

• Interactors: Logic that uses
entities to carry out a business
use case (e.g., initiate a new
movie production)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

40

Hexagonal Architecture at Netflix

• Data sources: Output adapters;
interface with different storage
implementations (e.g., SQL, REST
API, gRPC)

• Transport layer: Input adapters;
triggers a business use case;
separates input modes (e.g.,
HTTP) from the interactors

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

41

Adapters: Example

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

public interface OrderRepository {
 Optional<Order> findById(UUID
id);
 void save(Order order);
}

public class MongoDbOrderRepository
implements OrderRepository {
 public Optional<Order> findById(UUID
id) {
 // MongoDB-specific implementation
 }
 public void save(Order order) {
 // MongoDB-specific implementation
 }
}

Repository (interface) used

by the business logic;

doesn’t know anything

about the DB engine

An adapter that implements

the repository interface;

wraps details specific to a

data source (e.g., MongoDB)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

42

Adapters: Example

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

public interface OrderRepository {
 Optional<Order> findById(UUID
id);
 void save(Order order);
}

public class CassandraDbOrderRepository
implements OrderRepository {
 public Optional<Order> findById(UUID
id) {
 // Cassandra-specific implementation
 }
 public void save(Order order) {
 // Cassandra-specific implementation
 }
}

We will come back to adapters again!

Repository (interface) used

by the business logic;

doesn’t know anything

about the DB engine

Can swap in and out

different data sources

without affecting the

business logic!

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

43

Example: Netflix Architecture

• Q. What are benefits of this
architecture?

• Core logic does not know
anything about transport layer
or data sources

• Can add a new user interaction
(e.g., command line) or data
sources without changing the
business logic

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

44

Example: Netflix Architecture

• Can change data sources without
impacting core logic, as long as
they conform to repositories

• “We managed to transfer reads
from JSON API to GraphQL data
source within 2 hours.”

• No leakage of secrets about data
persistence into the business logic!

• Also improves scalability &
testability (Q. how so?)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

45

Example: Netflix Architecture

• Q. What are benefits of this
architecture?

• Q. What are some limitations?
When does this approach not
work well?

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

46

Cost of Modularization

47

Microservice Architecture

• Decompose system into multiple, deployable units of services, typically
developed by independent teams

• User requests are routed to the appropriate service

• Services communicate directly or through a message broker

48

Microservice Architecture

• Q. What are the benefits of a microservice architecture?

• Q. What are its potential downsides?

49

“Monolith First”

https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith

https://martinfowler.com/bliki/MonolithFirst.html

50

Cost of Modularization: Takeaway

• Like other quality attributes, changeability comes with costs and
trade-offs

• Modularization & abstraction, in general, are good practices

• But too much modularization can be harmful
• Can increase complexity, add development costs, affect performance,

and make certain changes even harder to make

• Recall: Risk-driven design!

• What are likely changes in my system that I need to be ready for?

• How important is the flexibility to adapt to these changes?

• Is the lack of flexibility the most significant risk to my product right now?

51

Summary of Principles & Methods

• Information Hiding: Secrets that are likely to change should be hidden
from other components

• Single Responsibility: A component should be responsible for fulling a
single purpose only

• Interface Segregation: An interface should not force clients to depend
on unnecessary details

• Dependency Inversion: A high-level component should not depend
directly on a low-level component

• Data Abstraction: Hide details of a data representation

• Interface Abstraction: Hide details of a service implementation

• Encapsulation: Isolate & hide a secret in one place within the system

52

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Leaning Goals
	Slide 3: Last Class
	Slide 4: Recall: Changeability
	Slide 5: Related Concepts
	Slide 6: Dependency
	Slide 7: Today’s Class
	Slide 8: A word of caution…
	Slide 9
	Slide 10: Single Responsibility Principle (SRP)
	Slide 11: Single Responsibility Principle (SRP)
	Slide 12: Recall: Stock Tracker App
	Slide 13: Stock Tracker: Violation of SRP?
	Slide 14: Stock Tracker: Violation of SRP?
	Slide 15: Stock Tracker App: New Design
	Slide 16: Single Responsibility Principle (SRP)
	Slide 17
	Slide 18: Interface Segregation Principle (ISP)
	Slide 19: Interface Segregation Principle (ISP)
	Slide 20: Example: ATM User Interface
	Slide 21: Example: ATM User Interface
	Slide 22: Another Example: Stock Tracker
	Slide 23: Interface Segregation Principle (ISP)
	Slide 24
	Slide 25: Dependency Inversion Principle (DIP)
	Slide 26: Dependency Inversion Principle (DIP)
	Slide 27: Dependency Inversion Principle (DIP)
	Slide 28: Dependency Inversion: Example
	Slide 29: Dependency Inversion: Example
	Slide 30: Dependency Inversion: Example
	Slide 31: Dependency Inversion: Example
	Slide 32: Stock Tracker App: New Design
	Slide 33: Stock Tracker App: New Design
	Slide 34: Dependency Inversion Principle (DIP)
	Slide 35
	Slide 36: Traditional Layered Architecture
	Slide 37: Alternative Design: Hexagonal Architecture
	Slide 38: Example: Netflix Architecture
	Slide 39: Hexagonal Architecture at Netflix
	Slide 40: Hexagonal Architecture at Netflix
	Slide 41: Adapters: Example
	Slide 42: Adapters: Example
	Slide 43: Example: Netflix Architecture
	Slide 44: Example: Netflix Architecture
	Slide 45: Example: Netflix Architecture
	Slide 46
	Slide 47: Microservice Architecture
	Slide 48: Microservice Architecture
	Slide 49: “Monolith First”
	Slide 50: Cost of Modularization: Takeaway
	Slide 51: Summary of Principles & Methods
	Slide 52: Summary

