
17-723: Designing
Large-scale
Software Systems
Generating Design Alternatives

2Designing Large-scale Software Systems - Generating Design Alternatives

Recall – The GCE Paradigm

Evaluate Communicate

Requirements Generate

3Designing Large-scale Software Systems - Generating Design Alternatives

This Lecture - Generate

Evaluate Communicate

Requirements Generate

4Designing Large-scale Software Systems - Generating Design Alternatives

This Lecture - Generate
• How to come up with a solution?
• How to refine a solution?
• How to solve a complex design problem?

5Designing Large-scale Software Systems - Generating Design Alternatives

This Lecture - Generate
• How to come up with a solution?
• How to refine a solution?
• How to solve a complex design problem?

6Designing Large-scale Software Systems - Generating Design Alternatives

Which Team Created A Better Design?
Team A
Produced one detailed design
option

1 2

Team B
Produced three design options

3

7Designing Large-scale Software Systems - Generating Design Alternatives

1 2

Team B
Produced three design options

3

Which Team Created A Better Design?
Team C
Produced five design options

1 2

5

3

4

8Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Think of Many Design Alternatives
• If you can think of a good design, try to think of a better one

• Think broadly about a diverse range of solution

• Research has shown: When simply prompting designers to
consider other design alternatives, designers with less
experience create better designs

1 2 53 4

9Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Think of Many Design Alternatives

Generate Evaluate

The purpose of idea generation
is to broaden up

Narrowing down of ideas is done
in the evaluation activity

1 2 53 4

10Designing Large-scale Software Systems - Generating Design Alternatives

Avoid Anchoring to Ideas

• Psychology research shows: People

tend to be strongly influenced by

their initial ideas and avoid broader
exploration (i.e., “anchoring”)

The Design

Your Initial Idea

11Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Avoid Anchoring to Initial Ideas
• Better: Try to find ideas that have little in common

with your previous ideas

• Thinking of weaknesses of your initial ideas

can help to avoid anchoring

12Designing Large-scale Software Systems - Generating Design Alternatives

Brainstorming Techniques
1) Write Ideas on Post-Its

Distributed RAID
Server

Decentralized
File Sharing

Trucks

Central Data Server
Pigeons

Sneaker Net

RAID is a storage technology for
redundancy guaranteeing no data loss for

a certain number of arbitrary disk failures

Example Problem: How to transfer data
between different locations

In-Class Activity: Cluster these
ideas by similarity

13Designing Large-scale Software Systems - Generating Design Alternatives

Physical Transport

Peer-To-Peer
Communication

Client-Server Communication

Brainstorming Techniques
2) Cluster Ideas by Similarity

Distributed RAID
Server

Decentralized
File Sharing

Trucks

Central Data Server
Pigeons

Sneaker Net

Example Problem: How to transfer data
between different locations

In-Class Activity: Identify ways to
combine these ideas

14Designing Large-scale Software Systems - Generating Design Alternatives

Brainstorming Techniques

Client-Server Communication

3) Combine Ideas

Central RAID Server

Peer-To-Peer Communication

Hybrid Communication

Periodic Local
Data Cloning

Distributed RAID
Server

Decentralized
File Sharing

Central Data Server

Example Problem: How to transfer data
between different locations

15Designing Large-scale Software Systems - Generating Design Alternatives

CRC Cards

Collaborators
 [List of other components that

 this component starts to

 interact with]
Responsibilities
 [Describe this component’s obligations to

 perform a task or know information]

Class / Component / Role
 [Name of the component]

A common technique for modelling software design options

16Designing Large-scale Software Systems - Generating Design Alternatives

Design Exercise: Generate Design Options
We want to design an interactive application that represent the same
information across different views that should update immediately
when the information changes.

0

5

10

1st Qtr 2nd
Qtr

3rd Qtr 4th Qtr

Bar Chart View

Sales Revenue Cost

Sales Pie Chart View

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

Sales Revenue Cost
1st Qtr 8.2 2.4 2
2nd Qtr 3.2 4.4 4
3rd Qtr 1.4 1.8 1.4
4th Qtr 1.2 2.8 2

Table View

Changes here trigger
updates in other views

In-Class Activity: Describe relevant modules, their
responsibilities, and interactions for this system

17Designing Large-scale Software Systems - Generating Design Alternatives

Model-View-Controller CRC Cards
Collaborators
- View
- Controller

Responsibilities
- Provides core functionality (main business logic)
- Registers views and controllers
- Notifies components about data changes

Component / Role: Model

Collaborators
- Model
- Controller

Responsibilities
- Displays information to user
- Creates controller
- Retrieves data from model
- Implements update

Component / Role: View Collaborators
- View
- Model

Responsibilities
- Accepts user input
- Translates evens to service

requests for them model or
display request to view

Component / Role: Controller

Model-View-Controller (MVC) is a common solution to this
problem. MVC is a “design pattern”.

18Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Start By Considering Existing Solutions

• Most problems have been solved already and described in a

well-documented way

• Knowing existing solutions and patterns in your field can

save you a lot of time and effort

19Designing Large-scale Software Systems - Generating Design Alternatives

Design Patterns

“A pattern is a common, acceptable solution to a

reoccurring problem that arises in a specific context”

It is a good solution,
but not always the

best onefound in many
instances

Patterns always refer to a
specific situation, goal, or
trade-off. Patterns are not

universally good

The problem is generic enough
so that the it generalizes

beyond a few concrete cases

20Designing Large-scale Software Systems - Generating Design Alternatives

Example Pattern: Model-View-Controller
Context: Designing an interactive application

Problem: How to represent the same information across different

views that should update immediately when the information

changes?

Solution: Divide your application into model, view, and controller.

Pattern descriptions have many different formats. At minimum it
should describe problem, context, and solution

21Designing Large-scale Software Systems - Generating Design Alternatives

Design Patterns are a Toolbox
Every engineer should know about common tools for common
problems.

Getting experience in
using the common tools

Knowing advantages
and disadvantages
of the tools

Knowing when
not to use a tool

Seeing a problem,
recognizing which tool
is appropriate

22Designing Large-scale Software Systems - Generating Design Alternatives

Patterns Describe a Solution

• Patterns are abstractions of language-independent
design elements capturing the core idea of a solution

• Involves making design decisions to implementation concretely

• Patterns abstract away specific project details to transfer knowledge

23Designing Large-scale Software Systems - Generating Design Alternatives

Patterns Describe a Solution
• Pattern solutions often involve assigning

pattern-specific roles to classes / objects / messages / components

• Roles superimpose dedicated responsibilities on design elements

• Mentioning roles in naming or documentation communicates the design

:Model :View
getData()

24Designing Large-scale Software Systems - Generating Design Alternatives

Patterns Describe a Problem

• The problem states the intent & motivation of the pattern

• Applied outside of a problem space, a pattern could result in

bad design (e.g., overuse of Singletons)

• Seeing a pattern in some software tells you

not only what the design is, but also why

25Designing Large-scale Software Systems - Generating Design Alternatives

Patterns Describe Consequences
• Each design pattern comes with an inherent trade-off

• e.g., design complexity vs. changeability; or performance vs. simplicity

• Patterns help building software with well-defined properties

• Trade-offs need to be evaluated for each concrete situation

• Negative consequences can be mitigated by modifying the pattern

26Designing Large-scale Software Systems - Generating Design Alternatives

Consequences of MVC
• Extensibility of Views: Adding

new views requires little effort
• Changeability of Views:

Changing a view does not
require changing other parts of
the software

• Performance of Updates:
Many messages are sent
between models and views

• Extensibility of Model: Adding
new features to the model
might require changes in
controllers and views.

Question: What consequences does MVC have
on quality attributes?

27Designing Large-scale Software Systems - Generating Design Alternatives

Domain-specific Patterns

• Each domain has its own patterns and pattern languages

• Some are variations of generic patterns

• Domain-specific patterns have very high utility in their domain

because they can use knowledge about a sub-context

28Designing Large-scale Software Systems - Generating Design Alternatives

Domain-specific Patterns
Learn patterns in your domain to become an expert!

29Designing Large-scale Software Systems - Generating Design Alternatives

Other Types of Design Reuse: Tactics
• Tactics describe common ways to improve a quality attribute
• E.g., Ping-Echo and Heartbeat improve Availability

WorkerMonitor
ping

echo

Ping-Echo WorkerMonitor Heartbeat

echo
ping

ping?

Heartbeat

Heartbeat

Heartbeat

Find more tactics in the book
“Software Architecture in Practice”

restart Worker
restart Worker

30Designing Large-scale Software Systems - Generating Design Alternatives

If you have a hammer,
everything looks like a nail

Pa
tte
rn

Software quality is not measured

by the number of

used patterns

31Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Avoid Over-Using Design Patterns
• Design patterns are a common source of anchoring

• Consider context & consequences thoroughly before

choosing a pattern

• Think of many alternatives to design patterns

Pa
tte
rn

32Designing Large-scale Software Systems - Generating Design Alternatives

Other Common Challenges with Patterns
• Patterns can be misinterpreted as recipes

• Integration of patterns is a human-intensive, manual activity

• Patterns don’t make domain expertise obsolete

• When applying them, it is important to tailor them to the

concrete context

33Designing Large-scale Software Systems - Generating Design Alternatives

This Lecture - Generate
• How to come up with a solution?
• How to refine a solution?
• How to solve a complex design problem?

34Designing Large-scale Software Systems - Generating Design Alternatives

Design Pattern Instantiation

Design Pattern Implementation

Design Pattern

Abstract Problemsolves occurs in

Concrete Problemsolves

Instance of Instance of Instance of

Abstract Solution Abstract Context

Concrete Solution Concrete Context

tailored to

occurs in

35Designing Large-scale Software Systems - Generating Design Alternatives

Variation Points

• Variation points are unresolved design decisions of a reusable

design

• Good pattern descriptions explicitly document variation points

• When instantiating a pattern, think of possible variation points

36Designing Large-scale Software Systems - Generating Design Alternatives

MVC Variations

• Push model: model pushes all
updated data

• Pull model: after updates,
views and controllers pulls
data on a need-to-know
basis

ViewModel
doSomething()

notify()
update(allData)

ViewModel
doSomething()

notify()
update()

getData()

someData

Push Model

Pull Model

37Designing Large-scale Software Systems - Generating Design Alternatives

Push Model
• Model pushes all

updated data to
controllers and views

• Fewer calls / messages
• Simpler API
• Potentially huge data

structure is passed,
increasing coupling

ViewModel
doSomething()

notify()
update(allData)

ViewModel
doSomething()

notify()
update()

getData()

Push Model

Pull Model

someData

Question: What consequences does the Push Model have?

38Designing Large-scale Software Systems - Generating Design Alternatives

Pull Model
• Views and controllers pulls

data on a need-to-know
basis

• Model does not need to
know what views are
displaying data in

• On distribuend networks:
more options for
confidentiality

• Potentially inefficient

ViewModel
doSomething()

notify()
update(allData)

ViewModel
doSomething()

notify()
update()

getData()

Push Model

Pull Model

someData

Question: What consequences does the Pull Model have?

39Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned: Consider Variation Points
When Tailoring a Pattern To Your Context
• Design patterns need to be tailored to the concrete context

• Each design pattern describes a broad design space with

many variations

• Variations can impact the consequences of a design pattern

40Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned: Refine A Design By
Identifying And Resolving Variation Points
Variation points at different levels of abstraction form a decision tree

client server vs. peer to peer?

How to discover peers?How to prevent data loss?

Which RAID level?

RAID Backups

How often to backup?

41Designing Large-scale Software Systems - Generating Design Alternatives

This Lecture - Generate
• How to come up with a solution?
• How to refine a solution?
• How to solve a complex design problem?

42Designing Large-scale Software Systems - Generating Design Alternatives

What Is Different About Generating Ideas for
Complex System?

There is more than one design problem to solve. So, we cannot
immediately start generating ideas after understanding requirements

43Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned: Divide And Conquer
To Solve Complex Problems
• Split a complex problem into smaller sub-problems
• Solve sub-problem first, then combine them
• Do not forget about the whole
• Reflect about the relationships of the parts
• After merging sub-solutions, adjust the if necessary

Difference to Refinement and Variation Points: Here the sub-problems are
not part of the solution we picked but inherently part of the main problem

44Designing Large-scale Software Systems - Generating Design Alternatives

Delaying Decisions
• Identify design decisions that need more information or that are

likely to change later
• Attempt to design your system without assuming a solution for

these difficult decisions
• Keep a list of delayed decisions

and keep track of what you need to resolve them

See Information Hiding Principle
(next lecture)

45Designing Large-scale Software Systems - Generating Design Alternatives

Problems that arise when messaging on Earth, added infrastructure,
networking with largely varied distances, and different definition of a day

Design Exercise: Divide And Conquer

Design an interplanetary messaging

system for people living on Earth and

Mars to communicate with each other!

What sub-problems would you need

to solve?

SunEarth

Mars

46Designing Large-scale Software Systems - Generating Design Alternatives

Lesson Learned:
Solve Simpler Problems First
• When faced with a complex problem, experts solve a simpler

problem first
• Solution to simpler problem might be incomplete but can be

extended later
• Be aware when the simpler problem is so fundamentally

different that solutions do not generalize

47Designing Large-scale Software Systems - Generating Design Alternatives

Please Complete the Exit Ticket in Canvas!

48Designing Large-scale Software Systems - Generating Design Alternatives

Summary
• Think of Many Design Alternatives
• Avoid Anchoring to Ideas
• Start By Considering Existing Solutions
• Avoid Over-Using Design Patterns
• Divide And Conquer to Solve Complex Problems
• Solve Simpler Problems First

