17-423/723:
Software System Design

Design for Change I
Feb 4, 2026

Leaning Goals

* Apply principles for improving modularity: Single responsibility,
interface segregation, and dependency inversion

* Describe the benefits & limitations of each principle

« Evaluate possible costs of modularity and its impact on other quality
attributes

Last Class

« Changeability

* Information hiding

« Data abstraction

* Interface abstraction
* Encapsulation

Recall: Changeability

* A measure of the amount of effort involved in making a change to a
system

« Usually qualitative (i.e., yes/no), but sometimes quantified in terms of
numerical metrics (e.g., lines of code changed)

 Quality attribute specifications — examples:

* “A new publisher can be added without having to change any of the
existing subscribers”

* “New types of stocks can be added without changing the format of how
each stock is displayed”

 “Improving the performance of the C++ compiler does not affect the
parser”

« “Adding a new type of sensor in a self-driving vehicle requires changing
only the image processing module”

Related Concepts

* Modularity

« Degree to which different parts of the system can be substituted with
alternative parts without affecting the rest of the system

 Closely related to changeability: Modularity supports changeability!

Dependency

» Degree to which one component relies on another component to
fulfill its responsibility

* To fulfill its responsibility, component A depends on B through
connection X

* If B changes in a way that affects X, A may need to change to
continue fulfilling its responsibility

 Information hiding: Hide secrets (design decisions) that are likely to
change from other components

Today’s Class

 Other principles for improving the modularity and changeability of the
system

* SOLID principles
« Single-responsibility principle
» Open-closed principle
 Liskov substitution principle
* Interface segregation principle
 Dependency inversion principle

A word of caution...

* People tend to get attached to
trendy/popular ideas

* SOLID encodes good design
practices, but are NOT a solution to
every design problem

* Even good ideas, when applied
blindly, can result in harmful outcome

* Think of these as tools! Ultimately, you
need to apply your own judgement on
when these are helpful or not

Single Responsibility Principle

Single Responsibility Principle (SRP)

SINGLE RESPONSIBILITY PRINCIPLE

Just Because You Can, Doesn't Mean You Should

Single Responsibility Principle (SRP)

« Each component should be responsible for fulling a single
purpose only

» Purpose: A unit of functionality, a use case, or a quality attribute
« A purpose is associated with one or more design decision(s)

« Corollary: A component should not be designed to serve multiple
purposes

« Such a component may contain multiple secrets (i.e., design decisions)
for different purposes

* This encourages those secrets to become intermingled & dependent
on each other; harder to change independently!

« Such a component should be separated into multiple components

SRP:Example

public c}ass InvoiceService { ° Q What purpose(s)
public void generateInvoice(Order order) { .
// 1. Compute totals does this program
double subtotal = order.subtotal(); serve? What could go
double tax = subtotal * 0.08; 5
double total = subtotal + tax; wrong
// 2. Format invoice for display * Possible change:
String invoiceText = Change the totals
"Order: " + order.id() + "\n" + . .
"Subtotal: $" + subtotal + "\n" + calculation by rOUﬂdlng
"Tax: $" + tax + "\n" + up the tax amount

"Total: $" + total,;

double total = subtotal +
// 3. Save invoice round(tax);

FileWriter writer = new FileWriter("invoice.txt");
writer.write(invoiceText);
writer.close();

Recall: Stock Tracker App

40565 usD anA myQuotes, html
-5.57 (1.35%) ¥ today ' fle.///Users /dnj/Flestore/Teachl = Q- »
Closed: Feb 5, 6:30 PM EST « Disclaimer LIl _ACM Eric Bigger Photograghy G005 SP A4 » HTM L
After hours 406.40 +0.75 (0.18%) I
El myQuo(u_hﬂnl
1D 50 1M 6M YTD 1Y 5Y) »
2L ~ AV | SY | Max JAVA: opened at $.72 and is currently trading at §.72
412 INTC: opened at 24 .95 and is currently trading at 25,12
--- brevious AAPL: opened at 138.96 and is currently trading at 138,70
410 close MSFT: opened ar 28.70 and is currently trading at 2833
411.22 v A RTF
408
406 ene » myQuotes.rf
JAVA: opened 815 72 and is cumendy ¥acing ars 72
404—— : : ‘ ‘ : WNTC: openod a! 24 .95 and /s currendy Facing ar2s. 12
10:00AM 12:00PM 2:00PM 4:00PM 6:00PM 8:00PM AAPL: 0paned 81130 .96 and is currandly racing ar136.70
MEET: opened at 28 70 and Is currently radng o 28.33

* Get a list of stock quotes (prices) from an external source (e.g., Google)
* Produce output in HTML or RTF format
« Put the quote in bold if the change since the opening is > 1%

Based on an example by Daniel Jackson & Rob Miller

Stock Tracker: Violation of SRP?

getRTF Google
| tHTML genOutput RTF
Client App N ge Formatter Stock API
Stock
Tracker App Stock Quoter " Iquotes.csv
HTML
genOutput Formatter obtainQuote,
getAsk...

« Stock Trakcer App: Fulfills requests from a client for a quote in a certain format

« RTF/HTML formatter: Get quote from Stock Quoter & generate output in the
right format

« Stock Quoter: Invoke Google API to get quote & return the result to Formatter
* Q. Does this design violate SRP?

Stock Tracker: Violation of SRP?

getRTF Outout RTE Google
ClientApp N getHTML gentupy Formatter Stock API
Stock " |quotes.csv
Tracker App Stock Quoter '
HTML
genOutput Formatter obtainQuote,
getAsk...

* Problem: HTML/RTF Formatters know (1) how to generate HTML/RTF
elements in different formats and (2) what should be bolded, underlined, etc.,

* (2) is a design decision that can be separated & hidden from components that
generate HTML/RTF!

Stock Tracker App: New Design

T e B GeI:(-ar |;to

-------- rator
Stock | Quote toggIeBoId...: Generator | ...
Tracker App | genOutput | Formatter Interface | v,

e HTML
obtainQuote, implements Generator
| getAsk...

Client App Stock | | Google
Quoter Stock API

« HTML/RTF Generator: Writes & formats a given string using HTML/RTF tags
* Formatter: Encodes which part of the quote should be bolded, italicized
« Generators and Formatter now serve separate responsibilities!

Single Responsibility Principle (SRP)

« Each component should be responsible for fulling a single
purpose only

* Benefits: Single-responsibility (SR) components

* Reduce dependency between design decisions; make it easier to
change them independently

» Are more reusable: Provide a distinct unit of purpose that can be
reused in other contexts

* Are easier to understand & test
Q. Limitations or dangers of SRP?

Interface Segregation Principle

Interface Segregation Principle (ISP)

INTERFACE SEGREGATION PRINCIPLE

You Want Me To Plug This In, Where?

Interface Segregation Principle (ISP)

* An interface should not force clients to depend on unnecessary
details

* Interface pollution: A common issue that arises when an interface
grows & serves tasks for different types of clients

Example: ATM User Interface

Framsaction » Different types of transactions require
fabstracti_| different user interactions

+ Execute()
' « Some Ul methods are only used by a
single transaction
Deposit Withdrawal Transfer
Transaction Transaction Transaction o Q_ What could go Wrong here?

 Unnecessary dependencies between
the interface & clients!

nteraces * e.g., Achange in Ul can cause changes
across all transactions

+ RequestDepositAmt

+ RegquestWidrawalAmi * Q. What can we do to mitigate this
+ InforminsuficientFunds issue?

Example from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

Example: ATM User Interface

+ InforminsufficientFunds

ansaction ~An alternative design: Decompose
{abstract} . . .
r— the bloated interface into multiple,
separate interfaces
Jooost || Wil || ranter ‘Benefits:
N I Each interface serves one particular
~inteI:;;ce‘- «imei;ace» «inre;;ce» type Of Cllent
Deposit Ul Withdrawal Ul Transfer Ul .
| ’ | | Each interface does not force the
+ RequestDepositAmt + RequestWithdrawalAmt + RequestTransferAmt

client to depend on unnecessary
details

« Each interface (and its client) can
change independently from other
interfaces

> from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

Another Example: Stock Tracker

public interface Generator {

public void open () throws Exception; Suppose we Want tO add a
public void close (); .

blic void newiine O new type of generator: JSON
public void toggleBold () ; Q. What can gO Wrong?

public void toggleItalic (); Q_ HOW can we do better?

public void write (String s);

public class RTFGenerator implements Generator {

public void open() throws FileNotFoundException { ... }
.}
public class HTMLGenerator implements Generator
public void open() throws FileNotFoundException { ... }
.}

public class JSONGenerator implements Generator {
public void open() throws FileNotFoundException { ... }
-}

Interface Segregation Principle (ISP)

* An interface should not force clients to depend on unnecessary
details

* Interface pollution: A common issue that arises when an interface
grows & serves tasks for different types of clients

* Decompose the bloated interface into separate interfaces, each
exposing details that are needed only by a single client

* Q. What is the relationship between ISP and single
responsibility principle (SRP)?

Dependency Inversion Principle

Dependency Inversion Principle (DIP)

DEPENDENCY INVERSION PRINCIPLE

Would You Solder A Lamp Directly To The Electrical Wiring In A Wall?

Dependency Inversion Principle (DIP)

* ldea: A “high-level” component should High-level
not depend on a “low-level” Component
component (HC)

* High-level components (HC): X
Responsible for the core ;

) . : : Low-level
application/business logic and use cases T
* Low-level components (LC): Services or (LC)

libraries that serve the core logic

Dependency Inversion Principle (DIP)

* “Invert” the dependency from HC to

LC by introducing an intermediate High-level Service
- : Component >

abstraction (e.g., an interface) (HC) X Interface

« Recall: Interface abstraction! 3

* Interface provides abstract operations |

& data that are needed by HC 'mplements ;

» HC & LC both depend this abstraction -
ow-level

« HC does not directly interact with LC Component
(LC)

* Goal: When LC changes, minimize its
impact on HC

Dependency Inversion: Example

// High-level module
public class NotificationService {

private EmailSender sender; .
public NotificationService(EmailSender sender) { Notification
this.sender = sender; Service

}

public void NotifyUser(String user, String message) {
string fullMessage = $"To: {user}\nMessage: {message}";

sender.SendMessage(user, fullMessage); notifyUser
}
} !
// Low-level module Email
public class EmailSender { Sender
public void SendMessage(String user, String message) {

// Implements sending an e-mail message to user

h
¥

Dependency Inversion: Example

// Abstraction
public interface Messenger {

volid SendMessage(String user, String message);

}

NotifyUser
Notification | Messenger
Service (Interface)
impbmeMsé

EmailSender

Dependency Inversion: Example

// Abstraction _
public interface Messenger { NotifyUser

volid SendMessage(String user, String message);
} e
// High-level module Notlflcgtlon | Messenger
public class NotificationService { Service (Interface)
private Messenger sender;

public NotificationService(Messenger sender) { H

this.sender = sender; _ :
B |mpbmeMS§

public void NotifyUser(String user, String message) {
string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage); EmailSender
¥
}

// Low-level module
public class EmailSender implements Messenger {
public void SendMessage(string user, string message) {
// Implements sending an e-mail message to user

}

Dependency Inversion: Example

// Abstraction _
public interface Messenger { NotifyUser

volid SendMessage(String user, String message);
;/ High-level module Notification | Messenger
public class NotificationService { Service (Interface)
private Messenger sender; o
public NotificationService(Messenger sender) { , T
this.sender = sender; implements .-
S
public void NotifyUser(String user, String message) { =
string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage); SMSSender EmailSender
¥
¥

// Low-level module
public class SmsSender implements Messenger {
public void SendMessage(string user, string message) {
// Implements sending an SMS message to user

}

Stock Tracker App: New Design

» RTFGenerator
Stock | Quote write,
Tracker App | genOutput | Formatter toggleBold...
. HTML
obtainQuote, >
/ | getask.. Generator
Client App Stock | | Google
Quoter Stock API

* Q. Does this design violate DIP?

Stock Tracker App: New Design

write, G l:TFt
Stock | Quote toggIeBoId...: Generator | ... enerator
Tracker App | genOutput | Formatter Interface | v,

e HTML
obtainQuote, implements Generator
| getAsk...

Client App Stock | | Google
Quoter Stock API

« Generator interface: Hides the type of output file (HTML/RTF) from Formatter

* Formatter: Encodes which part of the quote should be bolded, italicized; does
not know anything about HTML/RTF!

« Formatter (HC component) no longer depends on the generators (LC
components)

Dependency Inversion Principle (DIP)

* Invert the dependency from HC to LC

by introducing an intermediate High-level | Service
abstraction (e.g., an interface) COTﬁg‘;‘e”t X | Interface
« HC & LC both depend this abstraction ;

* HC does not know anything about LC

* Goal: When LC changes, minimize its ;
iImpact on the high-level component Lawieel

Q. What assumption is this Comfgne”t
principle making? Do they always (L)
hold in practice?

implements

Lnterf Writer { -]
o e\r/o?;equleﬁgader(); ExerC|Se
old writeLine(String text); .
xold wrlteBéld(Strtng teit); Wh'Ch Of the three
} . .
public class PdfWriter implements Writer { .. } prInCIp|eS (SRP, ISP,

public class CsvWriter implements Writer { .. }

DIP) are violated in

// Financial report service

public class ReportService { 1 D
public void generateMonthlyReport() { thIS COde "
MySglConnection conn = new MySqglConnection("prod-db");
ResultSet rs = conn.executeQuery("SELECT * FROM sales"); I-{()\A/ (j() \AIC)lJICj
Writer writer = new PdfWriter(); |mprOV6 the deSlgn?

writer.writeHeader();
while (rs.next()) {
double revenue = rs.getDouble("revenue");
1f (revenue > 10000) {
writer.writeBold(rs.getString("region"));
} else {
writer.writelLine(rs.getString("region"));
¥

Dependency Inversion in Practice

Traditional Layered Architecture

« Common 3-layer pattern for application

Presentation Layer architecture
ﬂ Top-down dependency: Higher-level
Business Layer components depend on lower-level ones

* Presentation layer: User facing components
(Ul, APIs, command line...)

» Business layer: Implements the core
application logic

* Q. Potential downside (w.r.t. changeability?)

Data Layer gxter Il
ervices

Alternative Design: Hexagonal Architecture

* Inward dependency only: All
components depend on core business
logic (dependency inversion!)

« Adapter: An implementation of an

Ul

N — interface in the core logic
- o * Link between an external component &
e - Application the interface
(core) Input adapters: Allow users, external

Logging ’

adapter

Admin

actors, and client services to interact with
the core logic

* Output adapters: Wrappers for services
used by the core logic (e.g., database
engine)

Example: Netflix Architecture

[Data Sources][Compute][Services][Tools] ° Many different data SOUu rceS,
| 5 _ external services, tools
ﬁ ? c.i»g Lipstic?k Pig Wprkflow .]
— e o Data about movies, production
Pi : : .
S3 g INVIS® sobictuster e dates, employees, shooting
‘S H | locations (> 300 DB tables)
. Awazon oo Big Data Portal
N Metagat o « Multiple protocols: gRPC,
Spons o~ JSON API, GraphQL...
g Notebook

RDS preStO .. Miciohots r Ot(l;\:{ail?ifggzlet,o;aliafor i C !1 a I I e n g e : S-Wa p d ata SO U rceS
| WEERS. without affecting the core
business logic

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

Hexagonal Architecture at Netflix

 Entities: Business objects (e.g.,
Movie or Shooting Location);
knows nothing about how they are
stored

* Repositories: Interfaces to
create, retrieve, and modify
entities from a data source

» Interactors: Components that
iImplement business logic (e.g.,
initiate a new movie production)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Hexagonal Architecture at Netflix

« Data sources: Output adapters;
interface with different storage
implementations (e.g., SQL, REST
API, gRPC)

* Transport layer: Input adapters;
triggers a business use case,
separates input modes (e.g.,
HTTP) from the interactors

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Adapters: Example

Repository (interface) used

public interface OrderRepository { by the business logic;

Optional<Order> findById(UUID id); PRSI N
void save(Order order);

) about the DB engine

public class MongoDbOrderRepository implements
OrderRepository {
public Optional<Order> findById(UUID id) {
// MongoDB-specific implementation

} . An adapter that implements
public void save(Order order) { .. the repository interface;

// MongoDB-specific implementation wraps details specific to a
} data source (e.g., MongoDB)

}

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Adapters: Example

Repository (interface) used

public interface OrderRepository { by the business logic;
Optional<Order> findById(UUID id); PRSI T

void save(Order order); about the DB engine

}

public class CassandraDbOrderRepository

implements OrderRepository { Can swap in and out
public Optional<Order> findById(UUID id) { different data sources

// Cassandra-specific implementation RTE .
} i i P without affecting the

public void save(Order order) { business logic! ¢f¢2 .

// Cassandra-specific implementation

}

}

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Example: Netflix Architecture

* Q. What are benefits of this
architecture?

 Core logic does not know
anything about transport layer

or data sources

« Can add a new user interaction

(e.g., command line) or data
sources without changing the
business logic

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Example: Netflix Architecture

« Can change data sources without
Impacting core logic, as long as

SSoN AP they conform to repositories
D JSON API ‘«
Souroe > » “We managed to transfer reads

——— from JSON API to GraphQL data
— e source within 2 hours.”

Source
* No leakage of secrets about data
persistence into the business logic!

 Also improves scalability &
testability (Q. how so?)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Example: Netflix Architecture

* Q. What are benefits of this
architecture?

* Q. What are some limitations?
What assumption does this
architecture rely on?

REST API

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

Cost of Modularization

Microservice Architecture

Client Apps

Microservices

’,_ ,

,———»’ Catalog
L

\‘ |
5 | . Shopping ﬁ
Web | ‘“”1 Cart DB | |
® | _\PB |
Q .
2’ |
Q
. <

4

P ————— ———— [————————————

&0
|

J

€

e, |

(7R
f?s"s |

| s
—

o4

YIMOUd FOVSSIAN

» Discount

| |
‘ _

|
| Orderi E\
——=>} rdering Qg

r—---------------——

« Decompose system into multiple, deployable units of services, typically
developed by independent teams

« User requests are routed to the appropriate service
« Services communicate directly or through a message broker

Microservice Architecture

MONOLITHIC MICROSERVICE
ARCRITECTURE ARCHITECTURE
y User Micro- i User Micro-
interface service interface service
. Data \ \
Btﬂggiecss Access
Layer
Micro Micro- Micro Micro
| service service service service
| | | |
® @ o ® O
® [& & &
@ ® ® @ @
Data Base Data Base Data Base Data Base Data Base

* Q. What are the benefits of a microservice architecture?
* Q. What are its potential downsides?

“Monolith First”

Going directly to a
microservices
architecture is risky

Continue breaking out
services as your knowledge
of boundaries and service

A monolith allows you to
explore both the complexity

of a system and its ity ri :
f asy . As complexity rises start management increases
component boundaries breaking out some
microservices

https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith

https://martinfowler.com/bliki/MonolithFirst.html

Cost of Modularization: Takeaway

* Like other quality attributes, changeability comes with costs and
trade-offs

« Modularization & abstraction, in general, are good practices

* But too much modularization can be harmful
« Can increase complexity, add development costs, affect performance,
and make certain changes even harder to make
* Recall: Risk-driven design!
« What are likely changes in my system that | need to be ready for?
« How important is the flexibility to adapt to these changes?
* |s the lack of flexibility the most significant risk to my product right now?

Summary of Principles & Methods

* Information Hiding: Secrets that are likely to change should be hidden
from other components

 Single Responsibility: A component should be responsible for fulling a
single purpose only

* Interface Segregation: An interface should not force clients to depend
on unnecessary details

* Dependency Inversion: A high-level component should not depend
directly on a low-level component

« Data Abstraction: Hide details of a data representation
* Interface Abstraction: Hide details of a service implementation
* Encapsulation: Isolate & hide a secret in one place within the system

Summary

» Exit ticket!

