
17-423/723:
Software System Design
Design for Change II
Feb 4, 2026

2

Leaning Goals
• Apply principles for improving modularity: Single responsibility,

interface segregation, and dependency inversion
• Describe the benefits & limitations of each principle
• Evaluate possible costs of modularity and its impact on other quality

attributes

3

Last Class
• Changeability
• Information hiding
• Data abstraction
• Interface abstraction
• Encapsulation

4

Recall: Changeability
• A measure of the amount of effort involved in making a change to a

system
• Usually qualitative (i.e., yes/no), but sometimes quantified in terms of

numerical metrics (e.g., lines of code changed)
• Quality attribute specifications – examples:

• “A new publisher can be added without having to change any of the
existing subscribers”

• “New types of stocks can be added without changing the format of how
each stock is displayed”

• “Improving the performance of the C++ compiler does not affect the
parser”

• “Adding a new type of sensor in a self-driving vehicle requires changing
only the image processing module”

5

Related Concepts
• Modularity

• Degree to which different parts of the system can be substituted with
alternative parts without affecting the rest of the system

• Closely related to changeability: Modularity supports changeability!

6

Dependency
• Degree to which one component relies on another component to

fulfill its responsibility
• To fulfill its responsibility, component A depends on B through

connection X
• If B changes in a way that affects X, A may need to change to

continue fulfilling its responsibility
• Information hiding: Hide secrets (design decisions) that are likely to

change from other components

A B
X

7

Today’s Class
• Other principles for improving the modularity and changeability of the

system
• SOLID principles

• Single-responsibility principle
• Open-closed principle
• Liskov substitution principle
• Interface segregation principle
• Dependency inversion principle

8

A word of caution…
• People tend to get attached to

trendy/popular ideas
• SOLID encodes good design

practices, but are NOT a solution to
every design problem

• Even good ideas, when applied
blindly, can result in harmful outcome

• Think of these as tools! Ultimately, you
need to apply your own judgement on
when these are helpful or not

9

Single Responsibility Principle

10

Single Responsibility Principle (SRP)

11

Single Responsibility Principle (SRP)
• Each component should be responsible for fulling a single

purpose only
• Purpose: A unit of functionality, a use case, or a quality attribute
• A purpose is associated with one or more design decision(s)

• Corollary: A component should not be designed to serve multiple
purposes

• Such a component may contain multiple secrets (i.e., design decisions)
for different purposes

• This encourages those secrets to become intermingled & dependent
on each other; harder to change independently!

• Such a component should be separated into multiple components

12

SRP:Example
• Q. What purpose(s)

does this program
serve? What could go
wrong?

public class InvoiceService {
public void generateInvoice(Order order) {

// 1. Compute totals
double subtotal = order.subtotal();
double tax = subtotal * 0.08;
double total = subtotal + tax;

// 2. Format invoice for display
String invoiceText =

"Order: " + order.id() + "\n" +
"Subtotal: $" + subtotal + "\n" +
"Tax: $" + tax + "\n" +
"Total: $" + total;

// 3. Save invoice
FileWriter writer = new FileWriter("invoice.txt");
writer.write(invoiceText);
writer.close();

}
}

double total = subtotal +
round(tax);

• Possible change:
Change the totals
calculation by rounding
up the tax amount

13

Recall: Stock Tracker App

• Get a list of stock quotes (prices) from an external source (e.g., Google)
• Produce output in HTML or RTF format
• Put the quote in bold if the change since the opening is > 1%

Decoupling and Interfaces

Rob Miller
Fall 2008

© Robert Miller 2008

Quote Generation Problem
problem
¾obtain stock quotes for some ticker symbols
¾produce both RTF and HTML output
¾put the ask price in bold if the change since open is ≥ ± 1%¾put the ask price in bold if the change since open is ≥ ± 1%

Today’s Topics
principles and concepts of system design
¾modularity
¾decoupling
¾¾ information hidinginformation hiding

a new notation
¾module dependency diagram

case study: designing a stock quoter
¾using interfaces to decouple modules

© Robert Miller 2007

Design Tasks
tasks, for each ticker symbol:
¾download quote information from web site
¾parse to extract stock quotes
¾¾write to file in RTF or HTML formatwrite to file in RTF or HTML format

parsing
¾minimize parsing by choosing a site with a simple format
¾Yahoo offers stock quotes in comma-separated-values (CSV) format

example
¾http://quote.yahoo.com/d/quotes.csv?s=aapl&f=noa
¾¾rreturns the string “APPLE INC”,130.75,125.20 eturns the string “APPLE INC” 130 75 125 20

© Robert Miller 2007 © Robert Miller 2007

1

Decoupling and Interfaces

Rob Miller
Fall 2008

© Robert Miller 2008

Quote Generation Problem
problem
¾obtain stock quotes for some ticker symbols
¾produce both RTF and HTML output
¾put the ask price in bold if the change since open is ≥ ± 1%¾put the ask price in bold if the change since open is ≥ ± 1%

Today’s Topics
principles and concepts of system design
¾modularity
¾decoupling
¾¾ information hidinginformation hiding

a new notation
¾module dependency diagram

case study: designing a stock quoter
¾using interfaces to decouple modules

© Robert Miller 2007

Design Tasks
tasks, for each ticker symbol:
¾download quote information from web site
¾parse to extract stock quotes
¾¾write to file in RTF or HTML formatwrite to file in RTF or HTML format

parsing
¾minimize parsing by choosing a site with a simple format
¾Yahoo offers stock quotes in comma-separated-values (CSV) format

example
¾http://quote.yahoo.com/d/quotes.csv?s=aapl&f=noa
¾¾rreturns the string “APPLE INC”,130.75,125.20 eturns the string “APPLE INC” 130 75 125 20

© Robert Miller 2007 © Robert Miller 2007

1

HTML

RTF

Based on an example by Daniel Jackson & Rob Miller

14

Stock Tracker: Violation of SRP?

• Stock Trakcer App: Fulfills requests from a client for a quote in a certain format

• RTF/HTML formatter: Get quote from Stock Quoter & generate output in the
right format

• Stock Quoter: Invoke Google API to get quote & return the result to Formatter

• Q. Does this design violate SRP?

Stock Quoter

Google
Stock API

RTF
Formatter

HTML
Formatter

Stock
Tracker App

Client App

obtainQuote,
getAsk…

/quotes.csv

genOutput

genOutput

getRTF
getHTML

15

Stock Tracker: Violation of SRP?

• Problem: HTML/RTF Formatters know (1) how to generate HTML/RTF

elements in different formats and (2) what should be bolded, underlined, etc.,

• (2) is a design decision that can be separated & hidden from components that

generate HTML/RTF!

Stock Quoter

Google

Stock API
RTF

Formatter

HTML

Formatter

Stock

Tracker App

Client App

obtainQuote,

getAsk…

/quotes.csv

genOutput

genOutput

getRTF

getHTML

16

Stock Tracker App: New Design

• HTML/RTF Generator: Writes & formats a given string using HTML/RTF tags

• Formatter: Encodes which part of the quote should be bolded, italicized

• Generators and Formatter now serve separate responsibilities!

Stock

Quoter

RTF

Generator

HTML

Generator

Stock

Tracker App

obtainQuote,

getAsk…

genOutput

write,

toggleBold… Generator

Interface

Quote

Formatter

implements

Google

Stock API

Client App

17

Single Responsibility Principle (SRP)
• Each component should be responsible for fulling a single

purpose only
• Benefits: Single-responsibility (SR) components

• Reduce dependency between design decisions; make it easier to
change them independently

• Are more reusable: Provide a distinct unit of purpose that can be
reused in other contexts

• Are easier to understand & test
• Q. Limitations or dangers of SRP?

18

Interface Segregation Principle

19

Interface Segregation Principle (ISP)

20

Interface Segregation Principle (ISP)
• An interface should not force clients to depend on unnecessary

details
• Interface pollution: A common issue that arises when an interface

grows & serves tasks for different types of clients

21

Example: ATM User Interface
• Different types of transactions require

different user interactions
• Some UI methods are only used by a

single transaction
• Q. What could go wrong here?
• Unnecessary dependencies between

the interface & clients!
• e.g., A change in UI can cause changes

across all transactions
• Q. What can we do to mitigate this

issue?
Example from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

22

Example: ATM User Interface
• An alternative design: Decompose

the bloated interface into multiple,
separate interfaces

• Benefits:
• Each interface serves one particular

type of client
• Each interface does not force the

client to depend on unnecessary
details

• Each interface (and its client) can
change independently from other
interfaces

Example from: Agile Principles, Patterns, and Practices in C# by Martin & Matin (2007)

+ RequestTransferAmt

23

Another Example: Stock Tracker

The Big Question
how to make formatter independent of generator?
¾we want them decoupled
¾so we can plug in different generators
¾without changing the formatter’s code ¾without changing the formatter s code

solution
¾ formatter doesn’t refer to a particular generator class
¾ it refers to an interface instead

© Robert Miller 2007

Interfaces, in Pictures
what we want
¾ two ways to configure formatter

how does formatter refer to
generators?
¾with an interface

© Robert Miller 2007

Generator Interface
/**
* Interface for generator with basic text formatting.
* Typically a stream is passed to the constructor.
*/
public interface Generator { {public interface Generator

public void open () throws Exception;
public void close ();
public void newLine ();
public void toggleBold ();
public void toggleItalic ();
public void write (String s);

}

public class RTFGenerator implements Generator {
public void open() throws FileNotFoundException { ... }
...}

public class HTMLGenerator implements Generator {
public void open() throws FileNotFoundException { ... }
...}

© Robert Miller 2007

Using the Generator Interface
public class QuoteFormatter {
private final Set<String> symbols = new HashSet<String> ();
private final Generator generator;

public QuoteFormatter(Generator generator) {
thiis.generator = generator ;

}
public void addSymbol (String symbol) {
symbols.add (symbol);

}
public void generateOutput () throws Exception {
generator.open ();
for (String symbol: symbols) {
Quoter q = new Quoter (symbol);
q.obtainQuote();
generator.write (symbol + ": ");
generator.toggleItalic ();
generator.write ("opened at ");
generator.toggleItalic ();
...

generator.close();
}

© Robert Miller 2007
}

4

an object implementing
Generator is plugged into p gg
the formatter

no mention of HTMLGenerator
or RTFGenerator anywhere!

public class JSONGenerator implements Generator {
public void open() throws FileNotFoundException { ... }
...}

}

Suppose we want to add a
new type of generator: JSON
Q. What can go wrong?
Q. How can we do better?

24

Interface Segregation Principle (ISP)
• An interface should not force clients to depend on unnecessary

details
• Interface pollution: A common issue that arises when an interface

grows & serves tasks for different types of clients
• Decompose the bloated interface into separate interfaces, each

exposing details that are needed only by a single client
• Q. What is the relationship between ISP and single

responsibility principle (SRP)?

25

Dependency Inversion Principle

26

Dependency Inversion Principle (DIP)

27

Dependency Inversion Principle (DIP)
• Idea: A “high-level” component should

not depend on a “low-level”
component

• High-level components (HC):
Responsible for the core
application/business logic and use cases

• Low-level components (LC): Services or
libraries that serve the core logic

High-level
Component

(HC)

Low-level
Component

(LC)

X

28

Dependency Inversion Principle (DIP)

• “Invert” the dependency from HC to
LC by introducing an intermediate
abstraction (e.g., an interface)

• Recall: Interface abstraction!

• Interface provides abstract operations
& data that are needed by HC

• HC & LC both depend this abstraction

• HC does not directly interact with LC

• Goal: When LC changes, minimize its
impact on HC

High-level
Component

(HC)

Low-level
Component

(LC)

implements

Service
InterfaceX

29

Dependency Inversion: Example

Notification
Service

Email
Sender

notifyUser

// High-level module
public class NotificationService {

private EmailSender sender;
public NotificationService(EmailSender sender) {

this.sender = sender;
}
public void NotifyUser(String user, String message) {

string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage);

}
}

// Low-level module
public class EmailSender {

public void SendMessage(String user, String message) {
// Implements sending an e-mail message to user

}
}

30

Dependency Inversion: Example

Notification
Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {

void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {

private Messenger sender;
public NotificationService(Messenger sender) {

this.sender = sender;
}
public void NotifyUser(String user, String message) {

string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage);

}
}
// Low-level module
public class EmailSender implements Messenger {

public void SendMessage(string user, string message) {
// Implements sending an e-mail message to user

}
}

Messenger
(Interface)

implements

31

Dependency Inversion: Example

Notification
Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {

void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {

private Messenger sender;
public NotificationService(Messenger sender) {

this.sender = sender;
}
public void NotifyUser(String user, String message) {

string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage);

}
}
// Low-level module
public class EmailSender implements Messenger {

public void SendMessage(string user, string message) {
// Implements sending an e-mail message to user

}
}

Messenger
(Interface)

implements

32

Dependency Inversion: Example

Notification
Service

EmailSender

NotifyUser
// Abstraction
public interface Messenger {

void SendMessage(String user, String message);
}
// High-level module
public class NotificationService {

private Messenger sender;
public NotificationService(Messenger sender) {

this.sender = sender;
}
public void NotifyUser(String user, String message) {

string fullMessage = $"To: {user}\nMessage: {message}";
sender.SendMessage(user, fullMessage);

}
}
// Low-level module
public class SmsSender implements Messenger {

public void SendMessage(string user, string message) {
// Implements sending an SMS message to user

}
}

Messenger
(Interface)

SMSSender

implements

33

Stock Tracker App: New Design

• Q. Does this design violate DIP?

Stock
Quoter

HTML
Generator

Stock
Tracker App

obtainQuote,
getAsk…

genOutput
write,

toggleBold…

RTFGenerator
Quote

Formatter

Google
Stock API

Client App

34

Stock Tracker App: New Design

• Generator interface: Hides the type of output file (HTML/RTF) from Formatter
• Formatter: Encodes which part of the quote should be bolded, italicized; does

not know anything about HTML/RTF!
• Formatter (HC component) no longer depends on the generators (LC

components)

Stock
Quoter

RTF
Generator

HTML
Generator

Stock
Tracker App

obtainQuote,
getAsk…

genOutput

write,
toggleBold… Generator

Interface
Quote

Formatter

implements

Google
Stock API

Client App

35

Dependency Inversion Principle (DIP)

• Invert the dependency from HC to LC
by introducing an intermediate
abstraction (e.g., an interface)

• HC & LC both depend this abstraction

• HC does not know anything about LC

• Goal: When LC changes, minimize its
impact on the high-level component

• Q. What assumption is this
principle making? Do they always
hold in practice?

High-level
Component

(HC)

Low-level
Component

(LC)

implements

Service
InterfaceX

36

interface Writer {
void writeHeader();
void writeLine(String text);
void writeBold(String text);

}
public class PdfWriter implements Writer { … }
public class CsvWriter implements Writer { … }

// Financial report service
public class ReportService {

public void generateMonthlyReport() {
MySqlConnection conn = new MySqlConnection("prod-db");
ResultSet rs = conn.executeQuery("SELECT * FROM sales");

Writer writer = new PdfWriter();
writer.writeHeader();
while (rs.next()) {

double revenue = rs.getDouble("revenue");
if (revenue > 10000) {

writer.writeBold(rs.getString("region"));
} else {

writer.writeLine(rs.getString("region"));
}

}
}

}

Exercise:
Which of the three
principles (SRP, ISP,
DIP) are violated in
this code?
How do would
improve the design?

37

Dependency Inversion in Practice

38

Traditional Layered Architecture

• Common 3-layer pattern for application
architecture

• Top-down dependency: Higher-level
components depend on lower-level ones

• Presentation layer: User facing components
(UI, APIs, command line…)

• Business layer: Implements the core
application logic

• Q. Potential downside (w.r.t. changeability?)

Presentation Layer

Business Layer

Data Layer External
Services

39

Alternative Design: Hexagonal Architecture
• Inward dependency only: All

components depend on core business
logic (dependency inversion!)

• Adapter: An implementation of an
interface in the core logic

• Link between an external component &
the interface

• Input adapters: Allow users, external
actors, and client services to interact with
the core logic

• Output adapters: Wrappers for services
used by the core logic (e.g., database
engine)

40

Example: Netflix Architecture
• Many different data sources,

external services, tools
• Data about movies, production

dates, employees, shooting
locations (> 300 DB tables)

• Multiple protocols: gRPC,
JSON API, GraphQL…

• Challenge: Swap data sources
without affecting the core
business logic

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

https://netflixtechblog.com/metacat-making-big-data-discoverable-and-meaningful-at-netflix-56fb36a53520

41

Hexagonal Architecture at Netflix
• Entities: Business objects (e.g.,

Movie or Shooting Location);
knows nothing about how they are
stored

• Repositories: Interfaces to
create, retrieve, and modify
entities from a data source

• Interactors: Components that
implement business logic (e.g.,
initiate a new movie production)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

42

Hexagonal Architecture at Netflix
• Data sources: Output adapters;

interface with different storage
implementations (e.g., SQL, REST
API, gRPC)

• Transport layer: Input adapters;
triggers a business use case;
separates input modes (e.g.,
HTTP) from the interactors

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

43

Adapters: Example

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

public interface OrderRepository {
Optional<Order> findById(UUID id);
void save(Order order);

}

public class MongoDbOrderRepository implements
OrderRepository {
public Optional<Order> findById(UUID id) {
// MongoDB-specific implementation

}
public void save(Order order) {
// MongoDB-specific implementation

}
}

Repository (interface) used
by the business logic;
doesn’t know anything
about the DB engine

An adapter that implements
the repository interface;
wraps details specific to a
data source (e.g., MongoDB)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

44

Adapters: Example

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

public interface OrderRepository {
Optional<Order> findById(UUID id);
void save(Order order);

}

public class CassandraDbOrderRepository
implements OrderRepository {
public Optional<Order> findById(UUID id) {
// Cassandra-specific implementation

}
public void save(Order order) {
// Cassandra-specific implementation

}
}

Repository (interface) used
by the business logic;
doesn’t know anything
about the DB engine

Can swap in and out
different data sources
without affecting the
business logic!

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

45

Example: Netflix Architecture
• Q. What are benefits of this

architecture?
• Core logic does not know

anything about transport layer
or data sources

• Can add a new user interaction
(e.g., command line) or data
sources without changing the
business logic

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

46

Example: Netflix Architecture
• Can change data sources without

impacting core logic, as long as
they conform to repositories

• “We managed to transfer reads
from JSON API to GraphQL data
source within 2 hours.”

• No leakage of secrets about data
persistence into the business logic!

• Also improves scalability &
testability (Q. how so?)

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

47

Example: Netflix Architecture
• Q. What are benefits of this

architecture?
• Q. What are some limitations?

What assumption does this
architecture rely on?

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

https://netflixtechblog.com/ready-for-changes-with-hexagonal-architecture-b315ec967749

48

Cost of Modularization

49

Microservice Architecture

• Decompose system into multiple, deployable units of services, typically
developed by independent teams

• User requests are routed to the appropriate service
• Services communicate directly or through a message broker

50

Microservice Architecture

• Q. What are the benefits of a microservice architecture?
• Q. What are its potential downsides?

51

“Monolith First”

https://martinfowler.com/bliki/MonolithFirst.html#footnote-typical-monolith

https://martinfowler.com/bliki/MonolithFirst.html

52

Cost of Modularization: Takeaway
• Like other quality attributes, changeability comes with costs and

trade-offs
• Modularization & abstraction, in general, are good practices
• But too much modularization can be harmful

• Can increase complexity, add development costs, affect performance,
and make certain changes even harder to make

• Recall: Risk-driven design!
• What are likely changes in my system that I need to be ready for?
• How important is the flexibility to adapt to these changes?
• Is the lack of flexibility the most significant risk to my product right now?

53

Summary of Principles & Methods
• Information Hiding: Secrets that are likely to change should be hidden

from other components
• Single Responsibility: A component should be responsible for fulling a

single purpose only
• Interface Segregation: An interface should not force clients to depend

on unnecessary details
• Dependency Inversion: A high-level component should not depend

directly on a low-level component
• Data Abstraction: Hide details of a data representation
• Interface Abstraction: Hide details of a service implementation
• Encapsulation: Isolate & hide a secret in one place within the system

54

Summary
• Exit ticket!

