
17-423/723:
Designing Large-scale
Software Systems

Designing Interface
Specifications
Feb 5, 2025

2

Logistics

• M1 due date changed to next Monday (Feb 10)

• HW1 returned later today

3

Leaning Goals

• Describe the role and importance of an interface specification

• Describe the structure and meaning of a specification

• Describe four different dimensions that must be considered
while designing a specification

Examples & figures based on https://ocw.mit.edu/ans7870/6/6.005/s16/

https://ocw.mit.edu/ans7870/6/6.005/s16/

4

Interface Specifications

5

Specification

• A statement of a desired behavior or quality attribute of a
software system

• Functional specification
• “The scheduling system must provide a way for the patient to modify

an existing appointment”

• Quality attribute specification
• “The system must be able to handle additional 5000 users without a

loss of latency” (scalability)

• Interface specification
• Describes a piece of functionality or a service that a component is

expected to deliver to its clients

• Today’s focus!

6

Interface Specification

• Contract between a client and a
component

• For clients:
• Describes what a client needs to know

to use the component

• Describes what is expected as the
output, given an input

• Hides implementation details (secrets!)

• For implementors:
• Describes implementation tasks to be

fulfilled by developers (or LLMs)

• Hides possible uses of the component
by clients (Q. Why is this good?)

7

Interface Specifications in Practice

Java Collections API

8

Interface Specifications in Practice

Python Docstrings

9

Interface Specifications in Practice

REST API Doc

10

Specification: Elements

satisfies precondition

satisfies postcondition

• Each specification of a
function is associated with
pre- & post-conditions

• Pre-condition
• What the component expects

from the client, expressed as a
condition over the function input
and/or component state

• Post-condition
• What the component promises

to deliver, as a condition over
the function output and/or
component state

11

Specification: Meaning

satisfies precondition

satisfies postcondition

• Pre-condition ⇒ Post-condition
(i.e., logical implication)

• If the client satisfies the pre-
condition, the component promises
to satisfy post-condition

12

Specification: Meaning

violates precondition

behavior uncertain

• Pre-condition ⇒ Post-condition
(i.e., logical implication)

• If the client satisfies the pre-
condition, the component promises
to satisfy post-condition

• But if the client violates the pre-
condition, the component can
behave in an arbitrary way!

• Logically, “false implies anything”

• Q. Why is this reasonable?

13

Example: Specifying Array Find

• A specification of a “find” function

• By convention, we will label pre- & post-conditions as
requires and effects

• Meaning: If “val” occurs exactly once in “arr”, then it returns
index “i” such that arr[i] = val

• If “val” occurs zero times or more than once, then “find” may return
anything

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

14

Specification as an Implementation Set

• Specification defines a set of possible implementations

• Given a pre- & post-condition, any implementation that
fulfills the requirement “pre-condition ⇒ post-condition”
is a valid implementation of the specification

15

Example: Implementing Array Find

static int find(int[] arr, int val) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == val) return i;
 }
 return arr.length;
}

static int find(int[] arr, int val) {
 for (int i = arr.length -1 ; i >= 0; i--) {
 if (arr[i] == val) return i;
 }
 return -1;
}

Q. Do these functions

behave the same or

differently?

16

Example: Specifying Array Find

• A specification of the “find” function

• The two versions of “find” are both valid implementations
of this specification!

• As far as the client is concerned, they have the same behavior

• One could be substituted with the other, without affecting the
client’s code

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

17

Specification Must Hide Unnecessary Details

• What can appear inside the pre- &
post-conditions?

• Recommended practice
• Pre-conditions should only mention

input parameters of a function (Q.
Why not output?)

• Post-conditions should only mention
the input & output parameters

• They should avoid mentioning
hidden/private fields in the
component (Q. Why not?)

• If necessary, instead refer to
publicly visible fields/functions

18

Specification Must Hide Unnecessary Details

• Q. What’s undesirable about this specification of “deposit”?

• Q. How would you improve this?

public class Account {
 private String accountID;
 private int currBalance; // in cents

 public void deposit(int dollars)
 requires: nothing
 effects: increase currBalance by (dollars)*100
 { … // implementation }
}

19

How do we design a “good” specification?

20

Factors in Designing Specifications

• Deterministic vs. under-determined

• Declarative vs. operational

• Strong vs. weak

• General vs. restrictive

21

Deterministic vs. Under-determined

• A specification of a function is deterministic if, for any given
input, it allows exactly one possible output.

• A specification is under-determined if, for some input, it allows
multiple possible outputs.

22

Recall: Specification of Find

• An example of a deterministic specification
• Only one return value is possible for any given input

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

23

Recall: Specification of Find

• Q. Is the second specification (ver2) deterministic or
under-determined? Why?

static int find(int[] arr, int val)
 requires: val occurs exactly once in arr
 effects: returns index i such that arr[i] = val

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: returns index i such that arr[i] = val

Spec ver1

Spec ver2

24

Recall: Implementations of Find

static int find(int[] arr, int val) {
 for (int i = 0; i < arr.length; i++) {
 if (arr[i] == val) return i;
 }
 return arr.length;
}

static int find(int[] arr, int val) {
 for (int i = arr.length -1 ; i >= 0; i--) {
 if (arr[i] == val) return i;
 }
 return -1;
}

These are both valid

implementations of

Spec ver1 & ver2!

25

Deterministic vs. Under-determined

• A specification of a function is deterministic if, for any given
input, it allows exactly one possible output.

• A specification is under-determined if, for some input, it allows
multiple possible outputs.

• An under-determined specification is ambiguous and can result
in behaviors that are “surprising” to the client

• The client can’t rely on what output the function will return

• In general, deterministic specifications are preferrable
• Design consideration: For a given input, are multiple ouputs possible?

If so, how do I modify the pre- or post-condition to make it deterministic?

26

Declarative vs. Operational

• An operational specification describes how a function achieves
its post-condition through a series of steps

• A declarative specification describes what a function achieves
without saying how

27

Declarative vs. Operational: Example

• An example of an operational specification
• Q. What is undesirable about this specification?

• Expose details about how the function is implemented internally

• Unnecessarily constrains the set of possible implementations

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: examines a[0],a[1],…, in turn and returns
 the index of the 1st element equal to val

28

Declarative vs. Operational: Example

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: examines a[0],a[1],…, in turn and returns
 the index of the 1st element equal to val

static int find(int[] arr, int val)
 requires: val occurs in arr
 effects: returns index i such that arr[i] = val

Operational

Declarative

• Declarative specifications tend to:
• Be shorter, easier to understand

• Allow a larger set of implementations

• Give more flexibility to the implementor!

29

Declarative vs. Operational

• An operational specification describes how a function achieves
its post-condition through a series of steps

• A declarative specification describes what a function achieves
without saying how

• Operational specifications tend to:
• Expose details about how the function is implemented internally

• Unnecessarily constrains the set of possible implementations

• Declarative specifications are preferrable
• Design consideration: Is the specification describing “how” something is

done? If so, can we rewrite it to say only “what” it does?

30

Strong vs. Weak

• Let S1 and S2 be specifications with the same pre-condition

• S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

• (Mathematically, S1’s post-condition is logically stronger than S2’s
post-condition)

31

Strong vs. Weak: Example

• Spec ver2 is stronger than ver1, since it provides stronger
guarantees about the output

• How strong is “strong enough”?
• Depends on the client’s requirements
• To fulfill their own tasks, does the client rely on the index being the lowest?

static int find(int[] a, int val)
 requires: val occurs at least once in a
 effects: returns index i such that a[i] = val

static int find(int[] a, int val)
 requires: val occurs at least once in a
 effects: returns lowest index i such that a[i] = val

Spec ver1

Spec ver2

32

Strong vs. Weak: Example #2

static int find(int[] a, int val)
 requires: nothing
 effects: returns index i such that a[i] = val

Spec ver3

• Q. What is wrong with ver3?
• The specification is too strong. In fact, there is no possible valid

implementation for this specification!

33

Strong vs. Weak: Example #2

• Specification should be as weak as possible
• Stronger specifications allow a smaller set of implementations & are

harder to implement

• Weaker specifications give more flexibility to the implementor

static int find(int[] a, int val)
 requires: nothing
 effects: returns index i such that a[i] = val

Spec ver3

static int find(int[] a, int val)
 requires: nothing
 effects: if val doesn’t occur in a, returns -1
 else returns index i such that a[i] = val

Spec ver4

34

Strong vs. Weak

• Let S1 and S2 be specifications with the same pre-condition

• S1 is stronger than S2 if S1 provides more guarantees about
the output than S2 does

• (Mathematically, S1’s post-condition is logically stronger than S2’s
post-condition)

• A specification should be strong enough to support the needs of
the client

• A specification should also be as weak as possible, to provide as
flexibility to the implementor

• Design consideration: Is the specification providing more guarantees
than needed? If so, how much can we relax them without breaking the
client’s code?

35

General vs. Restrictive

• Let S1 and S2 be specifications with the same post-condition

• S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

• (Mathematically, S1’s pre-condition is logically weaker than S2’s pre-
condition)

36

General vs. Restrictive: Example

• Spec ver2 is more general than ver1, since it accepts a larger
set of inputs

• In ver1, the client must ensure that “val” occurs exactly once; ver2
imposes less burden on the client

static int find(int[] a, int val)
 requires: val occurs exactly once in a
 effects: returns index i such that a[i] = val

static int find(int[] a, int val)
 requires: val occurs in a
 effects: returns index i such that a[i] = val

Spec ver1

Spec ver2

37

General vs. Restrictive: Example #2

• Spec ver3 is most general (for the given post-condition)
• Accepts any inputs; no burden on the client!

• But also shifts the burden onto the component to check input
• Sometimes, this is undesirable, due to complexity or performance issues (e.g.,

consider a very large input array)

• A restriction of the pre-condition is sometimes necessary

static int find(int[] a, int val)
 requires: nothing
 effects: if val doesn’t occur in a, returns -1
 else returns index i such that a[i] = val

38

General vs. Restrictive

• Let S1 and S2 be specifications with the same post-condition

• S1 is more general than S2 if S1 puts less restrictions on the
input than S2 does

• (Mathematically, S1’s pre-condition is logically weaker than S2’s pre-
condition)

• A specification should be as general as possible
• A pre-condition places burden on the client to satisfy it

• Less restrictive it is, more applicable the function is

• A specification should be restrictive when necessary
• Design consideration: What needs to be checked about the input? If

the check is too expensive, can we restrict the pre-condition to rule out
bad inputs?

39

Factors in Designing Specifications

• Deterministic vs. under-determined

• Declarative vs. operational

• Strong vs. weak

• General vs. restrictive

40

Exercise: Are these good specifications?

static Set union(Set s1, Set s2)
 requires: “s1” and “s2” are non-empty
 effects: returns a new set that contains the
 elements from both “s1” and “s2”

static List sort(List l)
 requires: nothing
 effects: returns a new list that results from
 applying merge sort to “l”

static String read(String filepath)
 requires: filepath is not null
 effects: opens the file at “filepath” and returns
 the content of the file as a string

41

Interface Specifications: Takeaway

• A specification defines a contract between a component and
its clients

• A specification defines a set of valid possible implementations

• A specifications should be deterministic rather than under-
determined

• A specification should be declarative rather than operational

• A specification should be sufficiently strong, while being as
weak as possible

• A specification should be as general as possible, while being
restrictive when necessary

42

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Leaning Goals
	Slide 4
	Slide 5: Specification
	Slide 6: Interface Specification
	Slide 7: Interface Specifications in Practice
	Slide 8: Interface Specifications in Practice
	Slide 9: Interface Specifications in Practice
	Slide 10: Specification: Elements
	Slide 11: Specification: Meaning
	Slide 12: Specification: Meaning
	Slide 13: Example: Specifying Array Find
	Slide 14: Specification as an Implementation Set
	Slide 15: Example: Implementing Array Find
	Slide 16: Example: Specifying Array Find
	Slide 17: Specification Must Hide Unnecessary Details
	Slide 18: Specification Must Hide Unnecessary Details
	Slide 19
	Slide 20: Factors in Designing Specifications
	Slide 21: Deterministic vs. Under-determined
	Slide 22: Recall: Specification of Find
	Slide 23: Recall: Specification of Find
	Slide 24: Recall: Implementations of Find
	Slide 25: Deterministic vs. Under-determined
	Slide 26: Declarative vs. Operational
	Slide 27: Declarative vs. Operational: Example
	Slide 28: Declarative vs. Operational: Example
	Slide 29: Declarative vs. Operational
	Slide 30: Strong vs. Weak
	Slide 31: Strong vs. Weak: Example
	Slide 32: Strong vs. Weak: Example #2
	Slide 33: Strong vs. Weak: Example #2
	Slide 34: Strong vs. Weak
	Slide 35: General vs. Restrictive
	Slide 36: General vs. Restrictive: Example
	Slide 37: General vs. Restrictive: Example #2
	Slide 38: General vs. Restrictive
	Slide 39: Factors in Designing Specifications
	Slide 40: Exercise: Are these good specifications?
	Slide 41: Interface Specifications: Takeaway
	Slide 42: Summary

