
17-423/723:
Designing Large-scale
Software Systems

Design for Testability I & II
Feb 9 & 11, 2026

2

Logistics

• M1 due today

• M2 released later today;
• Build and test an initial prototype of the food rescue app

• Please start early! This will take longer than expected

• Midterm next Monday, Feb 16
• Covers up to this Wednesday’s lecture (testability)

• Open book, but no AI & electronics (laptop, phone, etc.,) allowed

• Similar to homework questions and recitation activities

3

Acknowledgements

• Parts of the materials and examples are based on the book
“Effective Software Testing: A developer’s guide” by Mauricio
Aniche (2022, Manning Publications)

4

Learning Goals

• Describe the basic elements of testing

• Describe testability and its relationship to testing

• Identify controllability and observability challenges in testing

• Apply test doubles to enable testing with dependencies

• Apply design principles to improve the testability of a system

5

Testing & Testability

6

Testing Basics

• Testing: Execution of a piece of code on test data in a
controlled environment, with an expected output.

• Test case: Given a program:
• A specific set of inputs to that program

• An expected output

• An oracle that determines whether the actual output of the program
matches the expected output.

• Test suite: A collection of test cases.

• Oracle problem: Figuring out what the expected output of
the program should be, for a given input.

7

Testing Basics

• Goals of testing
• Revealing failures (most common use!)

• Assessing quality (difficult but still relevant)

• Identifying the specification for a function/component through the
development of oracles

• “Complete testing” is impossible, and testing for bugs is more
successful than for correctness.

• BUT testing can be effective at establishing quality attributes
when approached in a mindful and disciplined manner

“Testing can show only the presence, not the absence of bugs.”
- Edsger W. Dijkstra

8

Testability

• The amount of effort required to create and execute automated
tests for a system

• Including: Setting up a test environment, developing the oracle,
running a component under a specific input, checking the output

• Some systems are more testable than others!

• Testing is nice; testability is better.

• …because testing won’t make bad code good, and you can’t
test well if the code itself is untestable

9

Example: Online Shopping Site

10

Example: Online Shopping Site

Suppose that we want to test the “checkout” workflow

The user has an option to use an external payment service (e.g., Paypal)

Q. What are some challenges in testing this system?

Payment

Service

Online

Shopping Site

Payment info

System under Test (SUT)

User
Checkout

Purchase

receipt

Payment

Confirmed

11

Dependencies make testing hard

• A program/component to be tested often depends on other
components (DOC)

• Deploying/executing DOC for testing might be expensive, slow,
or infeasible (e.g., external API, file I/O, databases)

• Testing CUT might require executing DOC under specific inputs
and/or getting DOC to produce specific outputs

Indirect Outputs

Indirect Inputs

Depended-on

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component

Under Test

(CUT)

12

Controllability & Observability

• Controllability: How easy is it to bring a program to a
particular state and/or inject it with a specific set of inputs?

• Observability: How easy is it to observe the behavior of a
program, in terms of its outputs, quality attributes, or effects
on its state?

• These two factors significantly determine the amount of
effort required in creating and running test cases – i.e.,
testability!

13

Dependencies make testing hard

• Observing (1) indirect input & output interactions between CUT
and DOC and (2) internal state of CUT is an observability
challenge.

• Getting CUT and DOC to behave in a particular way (e.g.,
generate a particular output) is a controllability challenge.

Indirect Outputs

Indirect Inputs

Depended-on

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component

Under Test

(CUT)

14

Controllability & Observability: Examples

• Controllability: How to get the payment service to respond with a
particular output (e.g., deny payment for an invalid credit card number)?

• Observability: How to observe the status of the checkout process when
the payment is denied?

Online shopping site

15

Controllability & Observability: Examples

• Controllability: How to set up the simulation environment to test the
vehicle software under a particular road setting?

• Observability: How to track the locations of the car and obstacles to
detect when a collision is possible?

Self-driving car simulator

16

Controllability & Observability: Examples

• Controllability: How to set up the distributed network to test the system
under a failure scenario (e.g., certain servers being down)?

• Observability: How to measure the availability of a service during the
failure scenario?

Distributed system

17

Test Doubles

• Components that act as a replacement for a dependency (DOC)
• Enables a component (CUT) to be tested in isolation without the

presence of DOC

• Test stub: Provides predefined responses to a function

• Mock component: Simulates the behavior of a component in
limited ways

• Test spy: Track method calls and arguments, to be used for
later verification (e.g., check whether a method was called)

18

Mock Component

• Simulates the behavior of a component in limited ways

• Useful for testing when the actual component:
• Has states that are difficult to create or reproduce

• Returns non-deterministic outputs

• Is slow to run (e.g., database query)

• Does not exist yet

Indirect Outputs

Indirect Inputs

Depended-on

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component

Under Test

(CUT)

Mock

Component

19

class PaymentProcessor:

 def charge(self, amount):

 """Calls an external API to process the payment"""

 raise NotImplementedError(

 "Real payment processing is not implemented!")

class ShoppingCart:

 def __init__(self, payment_processor):

 self.items = []

 self.payment_processor = payment_processor

 def add_item(self, name, price):

 self.items.append({"name": name, "price": price})

 def get_total(self):

 return sum(item["price"] for item in self.items)

 def checkout(self):

 total = self.get_total()

 # External dependency!

 return self.payment_processor.charge(total)

Component under test

External dependency

20

import unittest

from unittest.mock import Mock

class TestShoppingCart(unittest.TestCase):

 def test_checkout_calls_payment_processor(self):

 mock_payment_processor = Mock()

 mock_payment_processor.charge.return_value =

 "Payment Successful"

 cart = ShoppingCart(mock_payment_processor)

 cart.add_item("Laptop", 1000)

 cart.add_item("Mouse", 50)

 result = cart.checkout()

 # Verify return value

 self.assertEqual(result, "Payment Successful")

 # Verify that the mock method was called

 mock_payment_processor.charge.

 assert_called_once_with(1050)

if __name__ == "__main__":

 unittest.main()

Set up the mock object
with pre-determined value

Mock object library in Python

Create a shopping cart
with the mock payment

processor

Call the function to test

Check whether the test
passed

21

Mock Component

• Simulates the behavior of a component in limited ways

• Useful for testing when the actual component:
• Has states that are difficult to create or reproduce

• Returns non-deterministic outputs

• Is slow to run (e.g., database query)

• Does not exist yet

• Improving testability makes it easier to create/use test doubles!

Indirect Outputs

Indirect Inputs

Depended-on

Component

(DOC)

Direct Inputs

Direct Outputs
Test

Component

Under Test

(CUT)

Mock

Component

22

Design Principles for Testability

23

Changeability & Testability

• Changeability is strongly related to testability!

• Recall: Principles for changeability
• Information hiding

• Single-responsibility

• Interface segregation

• Dependency inversion

• They have a common goal: Reduce dependencies between
components to make them easier to change independently

• Discussion: How do these principles help improve (or reduce)
testability?

24

Changeability & Testability

• Information hiding principle
• Makes a component easier to test in isolation, by reducing dependencies

• Hides details that may be needed for testing (reduce observability)

• Single-responsibility principle
• Helps make test suite for a component more focused and simpler

• Interface segregation principle
• Makes it easier to create stubs/mocks for dependencies, by reducing the

size of the interface to be implemented

• Dependency inversion principle
• Makes it easier to create stubs/mocks, by abstracting away details

irrelevant to the high-level business logic

25

Design Principles for Testability

1. Separate business logic from infrastructure code

2. Improve controllability through dependency injection

3. Improve observability through accessor methods

4. Reduce test complexity through separation of concerns

26

Design Principles for Testability

1. Separate business logic from infrastructure code

2. Improve controllability through dependency injection

3. Improve observability through accessor methods

4. Reduce test complexity through separation of concerns

27

Separate Business Logic from Infrastructure Code

• Infrastructure (low level): Parts of the system that handles an
external dependency

• Database queries, calls to web services, file read/writes, etc.,

• Business/application logic (high level) often depends on the
infrastructure

• To test business logic, also need to observe & control the
interactions with the infrastructure

• Ideally, business logic should be tested in isolation without dealing
with details about the infrastructure

• Much easier to do if there is a clear separation between the two!

28

1 public class InvoiceFilter {

 2 private List<Invoice> all () {

 3 try {

 4 Connection connection = DriverManager.getConnection("db", "root", "");

 5 PreparedStatement ps =

 6 connection.prepareStatement("select * from invoice"));

 7 Results rs = ps.executeQuery();

 8 List<Invoice> allInvoices = new ArrayList<>();

 9 while (rs.next()) {

10 allInvoices.add(new Invoice(

11 rs.getString("name"), rs.getInt("value")));

12 }

13 ps.close ();

14 connection.close();

15 return allInvoices;

16 } catch (Exception e) {

17 // ..handles ….

18 }

19 public List<Invoice> lowValueInvoices () {

20 List <Invoice> issuedInvoices = all();

21 return issuedInvoices.all().stream().

22 filter(invoice -> invoice.value < 100). Collect(toList());

23 }

24 }

Gets all invoices from a database.

Code execute “select” query

(details unimportant)

Database APIs often throw

exceptions.

Returns all low value Invoices,

relying on the private all()

method.

29

1 public class InvoiceFilter {

 2 private List<Invoice> all () {

 3 try {

 4 Connection connection = DriverManager.getConnection("db", "root", "");

 5 PreparedStatement ps =

 6 connection.prepareStatement("select * from invoice"));

 7 Results rs = ps.executeQuery();

 8 List<Invoice> allInvoices = new ArrayList<>();

 9 while (rs.next()) {

10 allInvoices.add(new Invoice(

11 rs.getString("name"), rs.getInt("value")));

12 }

13 ps.close ();

14 connection.close();

15 return allInvoices;

16 } catch (Exception e) {

17 // ..handles ….

18 }

19 public List<Invoice> lowValueInvoices () {

20 List <Invoice> issuedInvoices = all();

21 return issuedInvoices.all().stream().

22 filter(invoice -> invoice.value < 100). Collect(toList());

23 }

24 }

Note: Infrastructure code is

intermixed with business

logic! Can’t avoid database

access when testing

“lowValueInvoices”

More complex code, more

bugs possible! (e.g., bugs

related to SQL and business

logic)

(UI code is another example

of code that’s often mixed

into business logic)

30

private MockedConstruction<DatabaseConnection> databaseConstruction;

private MockedConstruction<IssuedInvoices> issuedConstruction;

private void setUpConstruction(MockInitializer<DatabaseConnection> databaseInitialize,

MockInitializer<IssuedInvoices> issuedInitializer){

 databaseConstruction = mockConstruction(DatabaseConnection.class, databaseInitialize);

 issuedConstruction = mockConstruction(IssuedInvoices.class, issuedInitializer);

}

@Test

public void filterInvoices(){

 // ...

 setUpConstruction((mock, context) -> { // database initializer

 // Probably some other internal databaseConnection stubs

 }, (mock, context) -> { // issued invoice initializer

 when(mock.all()).thenReturn(listOfInvoices);

 });

 InvoiceFilter filter = new InvoiceFilter();

 assertThat(filter.lowValueInvoices()).containsExactlyInAnyOrder(john, steve);

 // ...

}

Creating a mock object for

the database can be

complex & time-consuming!

31

Recall: Dependency Inversion Principle (DIP)

• “High-level” components (i.e.,
business logic) should not directly
depend “low-level” components
(i.e., infrastructure)

• Invert the dependency from HC to
LC by introducing an intermediate
abstraction (i.e., interface)

• HC depends on the interface;
details about LC are hidden

• This makes it easier to test HC by
inserting a mock for the interface
(not LC)!

High-level

Component

(HC)

Low-level

Component

(LC)

implements

Service

InterfaceX

32

Recall: Hexagonal Architecture

• Inward dependency only: All
external components depend on
core business logic
(dependency inversion!)

• Port (Interface): An interface
between the core logic and an
external component

• Adapter: Implements a port
interface; links the interface to a
concrete implementation

33

Example: Shopping Cart Checkout

The shopping cart

logic does not need

to know how the

external services

are implemented!

34

public class PaidShoppingCartsBatch {

 // Ports (i.e., interfaces to external services)

 private ShoppingCartRepository db;

 private DeliveryCenter deliveryCenter;

 private CustomerNotifier notifier;

 public PaidShoppingCartsBatch(ShoppingCartRepository db,

 DeliveryCenter deliveryCenter, CustomerNotifier notifier) {

 // initialize object

 }

 public void processAll() {

 // Get all carts paid today

 List<ShoppingCart> paidShoppingCarts = db.cartsPaidToday();

 for (ShoppingCart cart : paidShoppingCarts) {

 // Create delivery order for the items in the cart

 LocalDate estimatedDayOfDelivery = deliveryCenter.deliver(cart);

 cart.markAsReadyForDelivery(estimatedDayOfDelivery);

 // Update the information about the cart

 db.persist(cart);

 // Notify the user of the estimated delivery date

 notifier.sendEstimatedDeliveryNotification(cart);

 }

 }

}

• Feature to test: Batch
process the set of shopping
carts for the day. For each
shopping cart:

• Get estimated delivery date
from the delivery center

• Mark the cart as being
delivered & update in DB

• Notify the user of the delivery
date

• Each of these three tasks
involves an external
dependency

• Goal: Test that the
processAll() calls these
services correctly

35

public interface ShoppingCartRepository {

 List<ShoppingCart> cartsPaidToday();

 void persist(ShoppingCart cart);

}

public class ShoppingCartHibernateDao

 implements ShoppingCartRepository {

 @Override

 public List<ShoppingCart> cartsPaidToday() {

 // A query to get the list of all

 // invoices that were paid today

 }

 @Override

 public void persist(ShoppingCart cart) {

 // A query to persist the cart

 // in the database

 }

}

Port (Interface) for Shopping Cart DB

Adapter for ShoppingCartRepository Port

Provides an abstraction over all

database related operations

Connects the port to a specific

external database service

(Hibernate + MySQL DB); can

be substituted with adapters for

alternative DB engines

36

import static org.mockito.Mockito.*;

@ExtendWith(MockitoExtension.class)

public class PaidShoppingCartsBatchTest {

 @Mock ShoppingCartRepository db;

 @Mock private DeliveryCenter deliveryCenter;

 @Mock private CustomerNotifier notifier;

 @Test

 void theWholeProcessHappens() {

 PaidShoppingCartsBatch batch = new PaidShoppingCartsBatch(db,

 deliveryCenter, notifier);

 ShoppingCart someCart = new ShoppingCart();

 LocalDate someDate = LocalDate.now();

 when(db.cartsPaidToday()).thenReturn(Arrays.asList(someCart));

 when(deliveryCenter.deliver(someCart)).thenReturn(someDate);

 batch.processAll();

 // Verify the test outcome by checking the states of components

 verify(deliveryCenter).deliver(someCart);

 verify(notifier).sendEstimatedDeliveryNotification(someCart);

 verify(db).persist(someCart);

 }

}

Create mock objects

Specify how the mocks
should behave

Verify that the methods
were called with the

specific arguments

Mocks created with the

Mockito framework

37

Separate Business Logic from Infrastructure Code

• Infrastructure: Parts of the system that handles an external
dependency

• Database queries, calls to web services, file read/writes, etc.,

• Business/application logic often depends on the infrastructure

• To test the business logic, also need to observe & control the
interactions with the infrastructure

• Apply an interface abstraction to separate the two as much
as possible!

• This makes it easier to create stubs/mocks to test the business logic
in isolation; these can be created without knowing the details of the
infrastructure code

38

Design Principles for Testability

1. Separate business logic from infrastructure code

2. Improve controllability through dependency injection

3. Improve observability through accessor methods

4. Reduce test complexity through separation of concerns

39

Improve Controllability through Dependency Injection

• Dependency injection
• A component receives one or more components that it depends on

• Dependencies are created and “injected” into the component by an
external entity (i.e., client), instead of being created internally

40

class Processor:

 def process(self):

 fetcher = DataFetcher()

 data = fetcher.fetch_data()

 return f“Processed: {data}”

class DataFetcher:

 def fetch_data(self):

 fetched = fetch_external_data()

 return fetched

Unit test

import unittest

class TestProcessor(unittest.TestCase):

 def test_process(self):

 processor = Processor()

 result = processor.process()

 expected = … # expected data for this test

 # Cannot easily control the return value of fetch_data()

 self.assertEqual(result, "Processed: ” + expected)

if __name__ == "__main__":

 unittest.main()

For testing, want to control the return value
of fetch_data

fetcher is a dependency of Processor

Processor directly instantiates DataFetcher
Difficult to control how this is done outside

of Processor!

41

class Processor:

 def __init__(self, fetcher: DataFetcher):

 self.fetcher = fetcher # Dependency injection

 def process(self):

 data = self.fetcher.fetch_data()

 return f"Processed: {data}"

class DataFetcher:

 def fetch_data(self):

 fetched = fetch_external_data()

 return fetched

Unit test

import unittest

from unittest.mock import Mock

class TestProcessor(unittest.TestCase):

 def test_process(self):

 expected = … # expected data for this test

 mock_fetcher = Mock()

 mock_fetcher.fetch_data.return_value = expected

 processor = Processor(mock_fetcher)

 result = processor.process()

 self.assertEqual(result, “Processed: ” + expected)

Processor expects “fetcher” through its
constructor instead of instantiating it

DataFetcher doesn’t change

fetcher can be mocked with a specific
return value for fetch_data

The mock fetcher is “injected” into
Processor

42

Dependency Injection & Dependency Inversion Principle (DIP)

• DIP is often achieved through
dependency injection

• Select an LC that implements
Service Interface

• Inject that LC into HC

• HC interacts with LC through the
interface; does not need to directly
reference or interact with LC

High-level

Component

(HC)

Low-level

Component

(LC)

implements

Service

Interface

X

Dependency

Injector

injects LC

instantiates

43

public interface ShoppingCartRepository {

 List<ShoppingCart> cartsPaidToday();

 void persist(ShoppingCart cart);

}

Port for Shopping Cart DB (i.e., service interface)

Logic for batch processing carts (i.e., high-level component)

public class PaidShoppingCartsBatch {

 // Ports (i.e., interfaces to external services)

 private ShoppingCartRepository db;

 private DeliveryCenter deliveryCenter;

 private CustomerNotifier notifier;

 public PaidShoppingCartsBatch(ShoppingCartRepository db,

 DeliveryCenter deliveryCenter, CustomerNotifier notifier) {

 // initialize object

 }

 ...

}

Another example of

dependency injection!

44

Improve Controllability through Dependency Injection

• Dependency injection
• A component receives one or more components that it depends on

• Dependencies are created and “injected” into the component by an
external entity (i.e., client), instead of being created internally

• Benefit: Separates the logic of creating dependencies from the
receiving component

• Improves controllability for testing, since dependencies can be more
easily mocked with specific behaviors and injected into CUT

• Q. Any potential downsides to dependency injection?

45

1 public class ChristmasDiscount {

 2 private final Clock clock;

 3 public ChristmasDiscount(Clock clock) { … }

 4

 5 public double applyDiscount(double rawAmount) {

 6 LocalDate today = clock.now();

 7 double discount = 0;

 8 boolean isChristmas = today.getMonth() == Month.DECEMBER

 9 && today.getDayOfMonth() == 25;

10 if(isChristmas);

11 discount = 0.15;

12 return rawAmount - (rawAmount * discount);

13 }

14 }

15

16 public class ChristmasDiscount {

17 public double applyDiscount(double rawAmount, LocalDate today) {

18 double discount = 0;

19 boolean isChristmas = today.getMonth() == Month.DECEMBER

20 && today.getDayOfMonth() == 25;

21 if(isChristmas);

22 discount = 0.15;

23 return rawAmount - (rawAmount * discount);

24 }

25 }

• Two versions of code that
applies a holiday discount

• Bottom uses a dependency
injection for the date

• Q. Which is better?

• Bottom is simpler but forces
a dependency onto clients;
all callers of applyDiscount
must pass a LocalDate!

• i.e., dependency injection
introduces trade-offs
between controllability vs.
complexity of client code

46

Design Principles for Testability

1. Separate business logic from infrastructure code

2. Improve controllability through dependency injection

3. Improve observability through accessor methods

4. Reduce test complexity through separation of concerns

47

class Order:

 def __init__(self, total_amount):

 self._total_amount = total_amount # Private field

 self._paid = False

 self._shipped = False

 def pay(self):

 """Marks the order as paid."""

 self._paid = True

 def ship(self):

 """Ships the order, but only if it's paid."""

 if self._paid:

 self._shipped = True

import unittest

class TestOrder(unittest.TestCase):

 def test_order_shipment_fails_if_not_paid(self):

 order = Order(100)

 order.ship() # Should not ship since it's not paid

 # No way to directly check if order was shipped!

 ... # ??

if __name__ == "__main__":

 unittest.main()

Test whether shipping before
payment fails (as it should)

The state “paid” and “shipped”
are internal to Order

Q. How do we check
whether the test passed?

48

Improve Observability through Accessor Methods

• Oracle: For each test case, determine whether the test passed
successfully or not

• Sometimes, this requires observing the internal state/behavior of
a component(s) that is, by default, not publicly accessible

• One way to improve observability is to augment the component
with accessor methods

49

class Order:

 ... # same as on the previous slide

 def get_status(self): # Getter that provides meaningful state

 """Returns the status based on payment and shipping state."""

 if self._shipped:

 return "Shipped"

 elif self._paid:

 return "Paid"

 else:

 return "Pending Payment”

class TestOrder(unittest.TestCase):

 def test_order_shipment_fails_if_not_paid(self):

 order = Order(100)

 order.ship() # Should not ship since it's not paid

 # Check that the order is not shipped before payment

 self.assertEqual(order.get_status(), ”Pending Payment")

if __name__ == "__main__":

 unittest.main()

Use the accessor method
as part of test oracle

Provides visibility into the
status of the order

Q. Why not create getters

for “shipped” and “paid”?

50

Improve Observability through Accessor Methods

• Oracle: For each test case, determine whether the test passed
successfully or not

• Sometimes, this requires observing the internal state/behavior of
a component(s) that is, by default, not publicly accessible

• One way to improve observability is to augment the component
with accessor methods

• Accessors expose details about a component to external entities
• This conflicts with the information hiding principle!

• Trade-offs between observability vs. changeability!

• Consider: Remove/hide testing accessors from the production
system if possible

51

Design Principles for Testability

1. Separate business logic from infrastructure code

2. Improve controllability through dependency injection

3. Improve observability through accessor methods

4. Reduce test complexity through separation of concerns

52

Reduce Test Complexity through Separation of Concerns

• Components with multiple responsibilities are harder to test,
require larger test suites, has more complex dependencies

• Recall: Single-responsibility principle (SRP)
• Break large components into smaller ones, each with a single,

cohesive purpose

• If there are multiple external dependencies (e.g., API, I/O, DB)
within a single component, consider separating them into
different components

• If a private function within a component is complex enough to
deserve its own tests, consider extracting it into its own
component

53

Testing offers clues about the quality of your design

All tests basically do the following three things. If any of them is
difficult, can we re-designed to make it easier?

1. Set up a component to be tested (and its dependencies)
❑ Can it be designed with fewer dependencies?

2. Invoke a method, after satisfying certain conditions
❑ Are the conditions hard to satisfy? Can we improve controllability?

3. Assert that the method behaved as expected
❑ What additional information do we need for the assertion? Can

observability be improved?

54

Design by Contract (DbC)

55

Design by Contract (DbC)

• Also called contract-based programming

• Each component is associated with a contract that describes
its expected behavior given some assumption about its input

• An interface specification (from last Wed’s class) is one type of
contract

56

Recall: Interface Specification

satisfies precondition

satisfies postcondition

• Pre-condition
• What the component expects

from the client, expressed as a
condition over the function input
and/or component state

• Post-condition
• What the component promises

to deliver, as a condition over
the function output and/or
component state

• Meaning: Pre-condition holds
⇒ post-condition holds

57

Design by Contract (DbC)

• Also called contract-based programming

• Each component is associated with a contract that describes
its expected behavior (i.e., post-condition) given some
assumption (pre-condition) about its input

• An interface specification (from last Wed’s class) is one type of
contract

• In addition to using contracts as a documentation, DbC also
involves checking that a component and its client(s) fulfill their
contract during execution

• Complementary to testing: Detect bugs in scenarios that are
not covered by test cases

58

Checking Contracts using Assertions

• Assertion: A statement asserting that a condition must hold at
a particular point in the execution

• If the assertion fails, throw an error or an exception

• Built-in support in many languages; can also simulate using
conditional statements and exceptions (i.e., “if (…)”)

class BankAccount {

 private double balance;

 public void deposit(double amount) {

 assert amount > 0 : “Deposit amount must be positive”;

 balance += amount;

 }

}

59

Checking Contracts using Assertions

• Assertion: A statement asserting that a condition must hold at
a particular point in the execution

• Assume a component method with a pre-condition and a post-
condition

• Add an assertion at the beginning of the method to check that
the pre-condition holds

• If it fails, it indicates an invalid input from the client

• Add an assertion at the end of the method to check that the
post-condition holds

• If it fails, it indicates a bug in the method

60

public class Basket {

 private double totalValue = 0;

 private Map<Product, Integer> basket = new HashMap<>();

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 public void add(Product product, int qtyToAdd) {

 // add the product

 // update the total value

 ...

 }

 // requires: product exists in the basket

 // effects: product is removed from the basket

 public void remove(Product product) {

 // remove the product from the basket

 // update the total value

 ...

 }

}

Pre-condition

Post-condition

61

public class Basket {

 private double totalValue = 0;

 private Map<Product, Integer> basket = new HashMap<>();

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 public void add(Product product, int qtyToAdd) {

 // check the post-condition holds on the exit

 assert product != null : “Product cannot be null”;

 assert qtyToAdd > 0 : “Cannot add 0 quantity”;

 // add the product

 // update the total value

 ...

 // check the post-condition holds on the exit

 assert basket.containsKey(product) :

 “Failed to add the product to the basket ;

 }

}

Assert that the pre-
condition holds

Assert that the post-
condition holds

62

public class Basket {

 private double totalValue = 0;

 private Map<Product, Integer> basket = new HashMap<>();

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 // total value is greater than prev. total value

 public void add(Product product, int qtyToAdd) {

 // assert(total value is greater than prev. total value)

 assert ??

 }

}

How do I write this assertion?

63

Checking Post-conditions

• Post-conditions are sometimes expressed over the state of the
component before and after a method

• These are also called pre-state and post-state, respectively

• To assert such a post-condition, we must be able to refer to
the pre-state at the end of the method

• Solution: Store the pre-state in an additional local variable

• These variables are also called specification variables
• They do not alter the behavior of the method and add no new

information, but exist for the purpose of specification only

64

public class Basket {

 private double totalValue = 0;

 private Map<Product, Integer> basket = new HashMap<>();

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 // total value is greater than prev. total value

 public void add(Product product, int qtyToAdd) {

 // Specification variable: Prev. total value

 double oldTotalValue = totalValue;

 // assert(total value is greater than prev. total value)

 assert (totalValue >= oldTotalValue);

 }

}

Add a specification variable
to store the pre-state

Check the post-condition
over the pre- & post-states

65

Invariant

• A condition over the state of a component that must always hold
throughout execution

• An important part of a contract, in addition to pre- & post-
conditions

• Describes what it means for the component to be in a valid state

• Clients rely on the invariant being true

• It is the responsibility of the component to ensure that it is never broken
(otherwise, it may break the client’s code!)

• Invariants are associated with a component, not with a
particular method

• An invariant holds in the pre- and post-state of every method

66

Examples: Invariant or not?

• A Set data structure does not contain duplicate elements

• The bank account balance is always positive

• The remove method removes the largest element in the input
list

• The list of items in a cart is sorted by the order in which they
were added

• The account balance after deposit is greater than the
previous balance

• The scheduling database does not contain multiple entries
with an overlapping appointment time

67

Checking Invariants

• Each invariant should be checked in (1) the initial state of the
component and (2) the post-state of each method

• Initial state
• Ensure that the component state is properly set up during the

initialization

• Post-state of every method
• Ensure that the method preserves the invariant after modifying the

component state

• Q. Do we also not need to check the invariant at the
beginning of each method (i.e., the pre-state)?

68

public class Basket {

 private double totalValue;

 private Map<Product, Integer> basket = new HashMap<>();

 // invariant: totalValue is never negative

 // constructor

 public Basket() {

 // initialize the component state

 totalValue = 0;

 basket = new HashMap<>();

 // check that the component has been properly constructed

 // i.e., it satisfies the invariant

 totalValue >= 0;

 }

 // requires: product is not null; quantity is greater than 0

 // effects: product is added to the basket

 public void add(Product product, int qtyToAdd) {

 // add the product

 // update the total value

 ...

 // check that the method preserves the invariant

 totalValue >= 0;

 }

}

Check that invariant
holds in initial state

Check that invariant
holds in the post-state

Invariant documentation

69

public class Basket {

 private double totalValue;

 private Map<Product, Integer> basket = new HashMap<>();

 // invariant: totalValue is never negative

 private boolean invariant() {

 return totalValue >= 0;

 }

 // constructor

 public Basket() {

 ...

 checkInvariant();

 }

 public void add(Product product, int qtyToAdd) {

 ...

 checkInvariant();

 }

 public void remove(Product product) {

 ...

 checkInvariant();

 }

}

Factor out the invariant

Reuse the invariant
across every method

70

Design by Contract: Benefits

• Improves reliability: Ensures functions only run with valid
inputs and produce expected results.

• Easier debugging: Errors are detected immediately when a
contract is violated, rather than producing unexpected
behavior later.

• Defensive programming: Prevents invalid states from
propagating through the system.

• Clear documentation: The contract defines explicit rules for
component inputs and outputs.

71

Design by Contract: Pitfalls

• Some contract conditions can be difficult to specify as an
assertion

• e.g., “The total value is equal to the sum of the prices of all items”

• Assertions can introduce performance overhead
• Can disable them in the production-ready version

• Throwing an error effectively terminates the program
execution; this is not always desirable behavior

• An exception may be thrown instead, to be caught and handled by
an external component

• Q. But exceptions also have downsides! What are some of
these?

• Contracts may be too restrictive or weak (recall the lecture on
interface specification!)

72

Test-Driven Development (TDD)

73

Test-Driven Development

• An approach to developing
software

• Idea: Write tests first before
writing any code

• Tests will fail; write minimal
code to pass the tests

• Claim: Result in more tests
written, less buggy code,
and reduced debugging time

1.

Scenarios

74

TDD Example: Factorial

• Goal: Write a program that computes a factorial

• Q. What are possible inputs that we need to test for?
• Factorial of 0

• Factorial of a positive number

• Factorial of a negative number

• Factorial of a non-integer

75

TDD from Requirements

• Creation of tests are driven by a feature request or a system
requirement (e.g., achieve a quality attribute)

• Given a requirement, think of different use case scenarios
(“variants”)

• Each scenario variant becomes a test case to pass

• Example: Scheduling application
• Requirement: Allow the user to search & book an appointment

• Scenarios:
• Log in, view available slots, select a time slot, enter patient info, confirm

appointment

• Log in, view available slots, no slots available

• Log in, view available slots, select a time slot, enter patient info, cancel
appointment

• others...

76

TDD: Benefits & Pitfalls

• Discussion: What are some benefits of TDD? Potential
downsides?

77

TDD: Benefits & Pitfalls

• By writing tests first, you are forced to think about requirements
and different scenarios – this is always beneficial!

• And you are more likely to end up with tests than if you hadn’t applied TDD

• TDD is code-centric: The goal is to write code that passes all tests
• Risks of neglecting high-level design considerations (e.g., changeability)

• TDD does not exclude good design, but the focus on passing tests may put
design as a secondary concern

• Following TDD does not automatically lead to high-quality design!
• Still need to think carefully about component responsibilities, and

assumptions about the client (i.e., contracts!), corner cases, and designing
to be ready for changes

78

Summary

• Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Acknowledgements
	Slide 4: Learning Goals
	Slide 5
	Slide 6: Testing Basics
	Slide 7: Testing Basics
	Slide 8: Testability
	Slide 9: Example: Online Shopping Site
	Slide 10: Example: Online Shopping Site
	Slide 11: Dependencies make testing hard
	Slide 12: Controllability & Observability
	Slide 13: Dependencies make testing hard
	Slide 14: Controllability & Observability: Examples
	Slide 15: Controllability & Observability: Examples
	Slide 16: Controllability & Observability: Examples
	Slide 17: Test Doubles
	Slide 18: Mock Component
	Slide 19
	Slide 20
	Slide 21: Mock Component
	Slide 22
	Slide 23: Changeability & Testability
	Slide 24: Changeability & Testability
	Slide 25: Design Principles for Testability
	Slide 26: Design Principles for Testability
	Slide 27: Separate Business Logic from Infrastructure Code
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Recall: Dependency Inversion Principle (DIP)
	Slide 32: Recall: Hexagonal Architecture
	Slide 33: Example: Shopping Cart Checkout
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Separate Business Logic from Infrastructure Code
	Slide 38: Design Principles for Testability
	Slide 39: Improve Controllability through Dependency Injection
	Slide 40
	Slide 41
	Slide 42: Dependency Injection & Dependency Inversion Principle (DIP)
	Slide 43
	Slide 44: Improve Controllability through Dependency Injection
	Slide 45
	Slide 46: Design Principles for Testability
	Slide 47
	Slide 48: Improve Observability through Accessor Methods
	Slide 49
	Slide 50: Improve Observability through Accessor Methods
	Slide 51: Design Principles for Testability
	Slide 52: Reduce Test Complexity through Separation of Concerns
	Slide 53: Testing offers clues about the quality of your design
	Slide 54
	Slide 55: Design by Contract (DbC)
	Slide 56: Recall: Interface Specification
	Slide 57: Design by Contract (DbC)
	Slide 58: Checking Contracts using Assertions
	Slide 59: Checking Contracts using Assertions
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Checking Post-conditions
	Slide 64
	Slide 65: Invariant
	Slide 66: Examples: Invariant or not?
	Slide 67: Checking Invariants
	Slide 68
	Slide 69
	Slide 70: Design by Contract: Benefits
	Slide 71: Design by Contract: Pitfalls
	Slide 72
	Slide 73: Test-Driven Development
	Slide 74: TDD Example: Factorial
	Slide 75: TDD from Requirements
	Slide 76: TDD: Benefits & Pitfalls
	Slide 77: TDD: Benefits & Pitfalls
	Slide 78: Summary

