17-423/723:
Designing Large-scale
Software Systems

Design for Testability | & |
Feb 9 & 11, 2026

Logistics

M1 due today

M2 released later today;
 Build and test an initial prototype of the food rescue app
* Please start early! This will take longer than expected

« Midterm next Monday, Feb 16
« Covers up to this Wednesday’s lecture (testability)
* Open book, but no Al & electronics (laptop, phone, etc.,) allowed
« Similar to homework questions and recitation activities

Acknowledgements

 Parts of the materials and examples are based on the book
“Effective Software Testing: A developer’s guide” by Mauricio
Aniche (2022, Manning Publications)

Learning Goals

 Describe the basic elements of testing

» Describe testability and its relationship to testing

* |dentify controllability and observability challenges in testing
* Apply test doubles to enable testing with dependencies

* Apply design principles to improve the testability of a system

Testing & Testabillity

Testing Basics

» Testing: Execution of a piece of code on test data in a
controlled environment, with an expected output.

* Test case: Given a program:
* A specific set of inputs to that program
* An expected output

* An oracle that determines whether the actual output of the program
matches the expected output.

* Test suite: A collection of test cases.

* Oracle problem: Figuring out what the expected output of
the program should be, for a given input.

Testing Basics

* Goals of testing
* Revealing failures (most common use!)
« Assessing quality (difficult but still relevant)

* |dentifying the specification for a function/component through the
development of oracles

« “Complete testing” is impossible, and testing for bugs is more
successful than for correctness.

« BUT testing can be effective at establishing quality attributes
when approached in a mindful and disciplined manner

“ITesting can show only the presence, not the absence of bugs.”
- Edsger W. Dijkstra

Testabillity

* The amount of effort required to create and execute automated
tests for a system

* Including: Setting up a test environment, developing the oracle,
running a component under a specific input, checking the output

« Some systems are more testable than others!
* Testing is nice; testability is better.

* ...because testing won’'t make bad code good, and you can't
test well if the code itself is untestable

Example: Online Shopping Site

Deliver to Hello, sign in Returns 0
amagon © Ghana All Search Amazon =EN. Account&Lists - & Orders -\.-:,Cart

— All Today's Deals Customer Service Registry Gift Cards Sell Shop the Gaming Store

¢ Kitchen favorites S
under $50
Gaming accessories Shop deals in Fashion Refresh your space New home arrivals under
$50
5 S N

=

Kitchen & dining Home improvement

Computer mice Chairs $: Shoes under $50 Kitchen Health and Beauty Décor Bedding & bath

Headsets Keyboards Jeans under $50

Example: Online Shopping Site

System under Test (SUT)

Checkout I; Online Payment info

Purchase Shopping Site Payment
receipt Confirmed

Payment

User)
Service

Suppose that we want to test the “checkout” workflow
The user has an option to use an external payment service (e.g., Paypal)
Q. What are some challenges in testing this system?

Dependencies make testing hard

I Direct Inputs Indirect Outputs

|
| |
| Test |
|

Component
Under Test
(CUT)

Depended-on
Component
(DOC)

Indirect Inputs

Direct Outputs

* A program/component to be tested often depends on other
components (DOC)

* Deploying/executing DOC for testing might be expensive, slow,
or infeasible (e.g., external API, file I/O, databases)

» Testing CUT might require executing DOC under specific inputs
and/or getting DOC to produce specific outputs

Controllability & Observability

* Controllability: How easy is it to bring a program to a
particular state and/or inject it with a specific set of inputs?

* Observability: How easy is it to observe the behavior of a
program, in terms of its outputs, quality attributes, or effects
on its state?

* These two factors significantly determine the amount of
effort required in creating and running test cases —i.e.,
testability!

Dependencies make testing hard

I Direct Inputs Indirect Outputs

|
| |
| Test |
|

Component
Under Test
(CUT)

Depended-on
Component
(DOC)

Indirect Inputs

Direct Outputs

* Observing (1) indirect input & output interactions between CUT
and DOC and (2) internal state of CUT is an observability
challenge.

» Getting CUT and DOC to behave in a particular way (e.g.,
generate a particular output) is a controllability challenge.

Controllability & Observability: Examples

Online shopping site

< Kitchen favorites
under 50

« Controllability: How to get the payment service to respond with a
particular output (e.g., deny payment for an invalid credit card number)?

* Observability: How to observe the status of the checkout process when
the payment is denied?

Controllablllty & Observablllty Examples

—I’fjl (Ill lﬁ
Ik

£,

Self-driving car simulator

« Controllability: How to set up the simulation environment to test the
vehicle software under a particular road setting?

* Observability: How to track the locations of the car and obstacles to
detect when a collision is possible?

Controllability & Observability: Examples

Microservices

Distributed system

p—
o

—-»J Catalog L
DB

|}
]
. |
1
1
]
- I ' |
: i 3
- 5 Shopping | / |
') . | - _
; g
C®
: <

| / /:\“ |
| » Discount ‘6% ’
| \DB |

==
’cﬁ Ordering {\ﬁ
7 &

|
]

dIMO YL FOVSSIN

r—--.-.-.--------——

« Controllability: How to set up the distributed network to test the system
under a failure scenario (e.g., certain servers being down)?

* Observability: How to measure the availability of a service during the
failure scenario?

Test Doubles

« Components that act as a replacement for a dependency (DOC)

« Enables a component (CUT) to be tested in isolation without the
presence of DOC

* Test stub: Provides predefined responses to a function

 Mock component: Simulates the behavior of a component in
limited ways

» Test spy: Track method calls and arguments, to be used for
later verification (e.g., check whether a method was called)

Mock Component

I Direct Inputs Indirect Outputs

|
| |
| Test |
|

Component
Under Test
(CUT)

Mock
Component

Indirect Inputs

Direct Outputs

« Simulates the behavior of a component in limited ways

« Useful for testing when the actual component:
« Has states that are difficult to create or reproduce
« Returns non-deterministic outputs
* |s slow to run (e.g., database query)
* Does not exist yet

class PaYMEN TP rOCES SO ettt e
def charge(self, amount): .
"""Calls an external API to process the payment

raise NotImplementedError(
"Real payment processing is not implemented!")

class Shoppingcart: PP PP EET R CE LT LT L L L LR LR CE bbbkl Component under test

def __init__(self, payment_processor):
self.items = []
self.payment_processor = payment_processor

External dependency

def add_item(self, name, price):
self.items.append({"name": name, "price": price})

def get_total(self):
return sum(item["price"] for item in self.items)

def checkout(self):
total = self.get total()
External dependency!
return self.payment _processor.charge(total)

import unittest . . .
-From Unittest.mock -'meort Mock4 --- MOCk ObJeCt Ilbrary In Python
class TestShoppingCart(unittest.TestCase):

def test checkout calls_payment processor(self):

mock_payment_processor = Mock() Set up the mock object
mock_payment_processor.charge.return_value = ,......cccomnsnszrnnmssees

P SueessEAIlT with pre-determined value

cart = ShoppingCart(mock_payment_processor) <. .
cart.add_item("Laptop", 1000) e
cart.add_item("Mouse", 50)

Create a shopping cart
with the mock payment
processor

result = cart.checkout() «

Call the function to test

Verify return value
self.assertEqual(result, "Payment Successful") w....
Verify that the mock method was called e Check whether the test
mock_payment_processor.charge. passed
assert_called_once with(1050)
if _name__ == "_main__
unittest.main()

Mock Component

I Direct Inputs Indirect Outputs

|
| |
| Test |
|

Component
Under Test
(CUT)

Mock
Component

Indirect Inputs

Direct Outputs

« Simulates the behavior of a component in limited ways

« Useful for testing when the actual component:
« Has states that are difficult to create or reproduce
« Returns non-deterministic outputs
* |s slow to run (e.g., database query)
* Does not exist yet

* Improving testability makes it easier to create/use test doubles!

Design Principles for Testability

Changeability & Testability

« Changeability is strongly related to testability!

« Recall: Principles for changeability
* Information hiding
 Single-responsibility
* Interface segregation
* Dependency inversion

* They have a common goal: Reduce dependencies between
components to make them easier to change independently

* Discussion: How do these principles help improve (or reduce)
testability?

Changeability & Testability

* Information hiding principle
 Makes a component easier to test in isolation, by reducing dependencies
» Hides details that may be needed for testing (reduce observability)

 Single-responsibility principle
» Helps make test suite for a component more focused and simpler

* Interface segregation principle

« Makes it easier to create stubs/mocks for dependencies, by reducing the
size of the interface to be implemented

« Dependency inversion principle

 Makes it easier to create stubs/mocks, by abstracting away details
irrelevant to the high-level business logic

Design Principles for Testability

Separate business logic from infrastructure code
Improve controllability through dependency injection
Improve observability through accessor methods
Reduce test complexity through separation of concerns

~ wwbh =

Design Principles for Testability

. Separate business logic from infrastructure code
Improve controllability through dependency injection
Improve observability through accessor methods
Reduce test complexity through separation of concerns

mw N oA

Separate Business Logic from Infrastructure Code

* Infrastructure (low level): Parts of the system that handles an
external dependency
« Database queries, calls to web services, file read/writes, etc.,

* Business/application logic (high level) often depends on the
infrastructure

* To test business logic, also need to observe & control the
interactions with the infrastructure

* |deally, business logic should be tested in isolation without dealing
with details about the infrastructure

* Much easier to do if there is a clear separation between the two!

1 public class InvoiceFilter { —

2 private List<Invoice> all () { — Gets all invoices from a database.
3 try {

4 Connection connection = DriverManager.getConnection("db", "root", "");

5 PreparedStatement ps = “ ”

6 connection.prepareStatement("select * from invoice")); Code execute “select query
7 Results rs = ps.executeQuery(); (details UnimDOFtant)

8 List<Invoice> allInvoices = new ArrayList<>();

9 while (rs.next()) {

10 allInvoices.add(new Invoice(

11 rs.getString("name"), rs.getInt("value")));

12 }

13 ps.close (); Database APIs often throw
14 connection.close(); exceptions.

15 return allInvoices;

16 } catch (Exception e) {

17 // ..handles ...

18 }

19 public List<Invoice> sowValueInvoiiiz)() { Returns all low value Invoices,
20 List <Invoice> issuedInvoices = a ; ; -

21 return issuedInvoices.all().stream(). relymg on the prlvate a"()

22 filter(invoice -> invoice.value < 100). Collect(toList()); method.

23 }

24 }

1 public class InvoiceFilter {

2 private List<Invoice> all () {

3 try {

4 Connection connection = DriverManager.getConnection("db", "root", "
5 PreparedStatement ps =

6 connection.prepareStatement("select * from invoice"));
7 Results rs = ps.executeQuery();

8 List<Invoice> allInvoices = new ArrayList<>();

9 while (rs.next()) {

10 allInvoices.add(new Invoice(

11 rs.getString("name"), rs.getInt("value")));

12 }

13 ps.close ();

14 connection.close();

15 return allInvoices;

16 } catch (Exception e) {

17 // ..handles ...

18 }

19 public List<Invoice> lowValuelInvoices () {

20 List <Invoice> issuedInvoices = all();

21 return issuedInvoices.all().stream().

22 filter(invoice -> invoice.value < 100). Collect(toList());
23 }

24 }

Bk

Note: Infrastructure code is
intermixed with business
logic! Can’t avoid database
access when testing
“lowValuelnvoices”

More complex code, more
bugs possible! (e.g., bugs
related to SQL and business
logic)

(Ul code is another example
of code that’s often mixed
into business logic)

private MockedConstruction<DatabaseConnection> databaseConstruction;
private MockedConstruction<IssuedInvoices> issuedConstruction;

private void setUpConstruction(MockInitializer<DatabaseConnection> databaselInitialize,
MockInitializer<IssuedInvoices> issuedInitializer)({
databaseConstruction = mockConstruction(DatabaseConnection.class, databaselInitialize);
issuedConstruction = mockConstruction(IssuedInvoices.class, issuedInitializer);

}
@Test
public void filterInvoices(){
/] ...
setUpConstruction((mock, context) -> { // database initializer
// Probably some other internal databaseConnection stubs : :
}, (mock, context) -> { // issued invoice initializer Creatlng a mOCk ObJeCt for
when(mock.all()).thenReturn(listOfInvoices); tf]EB (jEitEit)EiESEB can t)63
1)

complex & time-consuming!

InvoiceFilter filter = new InvoiceFilter();

assertThat(filter.lowValueInvoices()).containsExactlyInAnyOrder (john, steve);

/] ...

Recall: Dependency Inversion Principle (DIP)

- “High-level” components (i.e.,

business logic) should not directly High-level Service
depend “low-level” components Component I — — RISEE.
(i.e., infrastructure) (HC) 4

- Invert the dependency from HC to
LC by introducing an intermediate implements
abstraction (i.e., interface)

« HC depends on the interface; Low-level
details about LC are hidden Cor?fg;ent

* This makes it easier to test HC by
inserting a mock for the interface

(not LC)!

Recall: Hexagonal Architecture

Database
adapter

Feature 1

Ul adapter

Some system
adapter

Feature 2

Feature N

Some other
system adapter

* Inward dependency only: All
external components depend on
core business logic
(dependency inversion!)

* Port (Interface): An interface
between the core logic and an
external component

« Adapter: Implements a port
interface; links the interface to a
concrete implementation

Example: Shopping Cart Checkout

Adapters implement the port Ports abstract away the
interface and handle the C infrastructure details. They
external infrastructure. \speak “business language.”

P e b PEETI . i S A
r,,f SMTP b » S/ O '| ~ DeliveryCenter .,
= server .S — 45"*06 ‘Q'b@ > - webservice ™y ./

i S - "-_‘n_---—"/—-'* qﬁ}a‘y 4}{\ l"'"--__._:.__ e

b " i The shopping cart
. - persvesycence: logic does not need
L to know how the
external services

are implemented!

I —— ShoppingCart CartHibernateDao
1 ..-—“'-i hhhhh

| I': ::4

e s -

- Vi I MysaL |
I:-* SAF'?ueb A (i database |
- service ‘\b‘_._.- X l._‘ ‘_:
\"'--u"_‘ ‘‘‘‘‘ o I \.\\ _____________

These are domain objects. They only know about
business. They use the ports whenever they
need something outside their boundaries.

public class PaidShoppingCartsBatch { o]
/] Ports (i.e., interfaces to external services) Feature to teSt' BatCh

private ShoppingCartRepository db; pI’OCGSS the Set Of Shopping
private DeliveryCenter deliveryCenter; CartS for the day For eaCh

private CustomerNotifier notifier; .
shopping cart:

public PaidShoppingCartsBatch(ShoppingCartRepository db, « Get estimated delivery date
DeliveryCenter deliveryCenter, CustomerNotifier notifier) { from the deliverv center
// initialize object ry

} « Mark the cart as being
delivered & update in DB
public void processAll() {

// Get all carts paid today Notify the user of the delivery
List<ShoppingCart> paidShoppingCarts = db.cartsPaidToday(); date

for (ShoppingCart cart : paidShoppingCarts) { Each of these three tasks

/| Create delivery order for the items in the cart :
LocalDate estimatedDayOfDelivery = deliveryCenter.deliver(cart); |nVO|VeS an external

cart.markAsReadyForDelivery(estimatedDayOfDelivery);
// Update the information about the cart dependency
db.persist(cart); .
// Notify the user of the estimated delivery date * Goal' TeSt that the
notifier.sendEstimatedDeliveryNotification(cart); pI’OCGSSAll() Ca”S these
} } services correctly
}

Port (Interface) for Shopping Cart DB

public interface ShoppingCartRepository { i)
List<ShoppingCart> cartsPaidToday(); Provides an abstraction over all

void persist(ShoppingCart cart); .
} database related operations

Adapter for ShoppingCartRepository Port

public class ShoppingCartHibernateDao

implements ShoppingCartRepository { e
e Connects the port to a specific
public List<ShoppingCart> cartsPaidToday() { external database Service

// A query to get the list of all _

// invoices that were paid today (Hlbernate + MySQL DB), can
} . .

be substituted with adapters for

G alternative DB engines

public void persist(ShoppingCart cart) {
// A query to persist the cart
// in the database

import static org.mockito.Mockito.*; MOCkS Created Wlth the
Mockito framework

@ExtendWith(MockitoExtension.class)
public class PaidShoppingCartsBatchTest {
@Mock ShoppingCartRepository db;
@Mock private DeliveryCenter deliveryCenter; <
@Mock private CustomerNotifier notifier;
@Test
void theWholeProcessHappens() {
PaidShoppingCartsBatch batch = new PaidShoppingCartsBatch(db,
deliveryCenter, notifier);
ShoppingCart someCart = new ShoppingCart();
LocalDate someDate = LocalDate.now();

Create mock objects

when(db.cartsPaidToday()).thenReturn(Arrays.asList(someCart)); SpeCIfy how the mocks
when(deliveryCenter.deliver (someCart)).thenReturn(someDate); o=
should behave

batch.processAll();

// Verify the test outcome by checking the states of components
verify(deliveryCenter).deliver(someCart);
verify(notifier).sendEstimatedDeliveryNotification(someCart);
verify(db).persist(someCart);

Verify that the methods
were called with the
specific arguments

Separate Business Logic from Infrastructure Code

* Infrastructure: Parts of the system that handles an external
dependency
« Database queries, calls to web services, file read/writes, etc.,

« Business/application logic often depends on the infrastructure

* To test the business logic, also need to observe & control the
interactions with the infrastructure

* Apply an interface abstraction to separate the two as much
as possible!

* This makes it easier to create stubs/mocks to test the business logic
in isolation; these can be created without knowing the details of the
infrastructure code

Design Principles for Testability

. Separate business logic from infrastructure code

. Improve controllability through dependency injection
Improve observability through accessor methods

Reduce test complexity through separation of concerns

=~ Whnh =

Improve Controllability through Dependency Injection

» Dependency injection
A component receives one or more components that it depends on

* Dependencies are created and “injected” into the component by an
external entity (i.e., client), instead of being created internally

class Processor:

sz process(seli: S ——— fetcher is a dependency of Processor
fetcher = DataFetcher() .,
data = fetcher.fetch_data(f

return f“Processed: {data}” = .,

Processor directly instantiates DataFetcher
class DataFetcher: Difficult to control how this is done outside
def fetch_data(self): Of PrOCGSSOﬂ
fetched = fetch _external data() :
return fetched
Unit test _
import unittest For testing, want to control the return value
class TestProcessor(unittest.TestCase): . Of fetCh data

def test_process(self):
processor = Processor()
result = processor.process()‘,
expected = .. # expected data for this test
Cannot easily control the return value of fetch data()

self.assertEqual(result, "Processed: ” + expected)

o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
**
.

if _name__ == "_main__"
unittest.main()

class Processor:

def __init__(self, fetcher: DataFetcher): PRPTTTLL Processor expects “fetcher” through ItS
self.fetcher = fetcher # Dependency injection t t . t Cj f. t t. t. .t
def process(self): constructor instead of instantiating i

data = self.fetcher.fetch data()
return f"Processed: {data}"

class DataFetcher: <rereviiiiiiiiiiiiiiiievn L
def fetch_data(self): o DataFetcher doesn’t change
fetched = fetch_external _data()
return fetched

Unit test
import unittest
from unittest.mock import Mock

class TestProcessor(unittest.TestCase): fetcher can be mocked with a SpeCifiC
def fee proessieeliye e return Value fOF fetch data
expected = .. # expected data fgn.ihi% test —
mock_fetcher = Mock() ="
mock_fetcher.fetch_data.return_value = expected) o _
processor = Processor(mock_fetcher)®:meeeuni [The mOCk fetCher IS ulnjeCted” |nt0
result = processor.process() 1 PrOCeSSOr

self.assertEqual(result, “Processed: ” + expected)

Dependency Injection & Dependency Inversion Principle (DIP)

 DIP is often achieved through High-level X .
g : Component : Service
dependency injection (I—FI)C) Interface
» Select an LC that implements - .
Service Interface ;
* Inject that LC into HC injects LC implements ¢
» HC interacts with LC through the
interface; does not need to directly sl
reference or interact with LC Dependency » Component
Injector (LC)

instantiates

Port for Shopping Cart DB (i.e., service interface)

public interface ShoppingCartRepository {
List<ShoppingCart> cartsPaidToday();
void persist(ShoppingCart cart);

}

Logic for batch processing carts (i.e., high-level component)

public class PaidShoppingCartsBatch {
// Ports (i.e., interfaces to external services)

private ShoppingCartRepository db; Another example Of

private DeliveryCenter deliveryCenter; . . . |

private CustomerNotifier notifier; =" dependency |nject|on_
PRT

public PaidShoppingCartsBatch(ShoppingCartRepository db,
DeliveryCenter deliveryCenter, CustomerNotifier notifier) {
// initialize object

}

Improve Controllability through Dependency Injection

» Dependency injection
A component receives one or more components that it depends on

« Dependencies are created and “injected” into the component by an
external entity (i.e., client), instead of being created internally

» Benefit: Separates the logic of creating dependencies from the
receiving component

* Improves controllability for testing, since dependencies can be more
easily mocked with specific behaviors and injected into CUT

« Q. Any potential downsides to dependency injection?

1 public class ChristmasDiscount { o .

2 private final Clock clock; TWO_VerSIOnS_ Of Co_de that
3 public ChristmasDiscount(Clock clock) { .. } applleS d hO“day d|SCOU”t
4

5 public double applyDiscount(double rawAmount) { ° BOttom uses a dependenCy
6 LocalDate today = clock.now(); injection for the date

7 double discount = 0;

8 boolean isChristmas = today.getMonth() == Month.DECEMBER ° Q Which is better?

9 && today.getDayOfMonth() == 25;

10 iféischristmas% « Bottom is simpler but forces
11 iscount = 0.15; : .
12 return rawAmount - (rawAmount * discount); a dependency Onto _Cllents’
13} all callers of applyDiscount
o must pass a LocalDate!

16 public class ChristmasDiscount { ° 1| . :

17 public double applyDiscount(double rawAmount, LocalDate today) { !'e" dependency |nJeCt|On
18 double discount = 0; introduces trade-offs

19 boolean isChristmas = today.getMonth() == Month.DECEMBER between Controllability VS.
20 && today.getDayOfMonth() == 25; | . f | d

21 1f(isChristmas); Comp eXIty OorcC Ient code

22 discount = 0.15;

23 return rawAmount - (rawAmount * discount);

24 }

25 }

Design Principles for Testability

Separate business logic from infrastructure code
Improve controllability through dependency injection
Improve observability through accessor methods
Reduce test complexity through separation of concerns

A

class Order:
def __init__(self, total _amount):
self. _total _amount = total _amount # Private field

self._paid = False The state “paid” and “shipped”

Se-l_f._Sh"Lpped _ False RN NN RN R RN E AN RN NS EEEEEEEEEEEEEEEEEEEEEEEEEEEE .
def pay(self): are internal to Order

"""Marks the order as paid."""

self. paid = True
def ship(self):
"""Ships the order, but only if it's paid."""

if self._paid:
self. _shipped = True

tnport unittest Test whether shipping before

class TestOrder(unittest.TestCase): = payment fails (aS it ShOUld)
def test_order_shipment_ fails_if not_paid(self):«”

order = Order(100)
order.ship() # Should not ship since it's not paid

No way to directly check if order was shipped! Q HOW dO we check
whether the test passed?

if __name__ == "__main__
unittest.main()

Improve Observability through Accessor Methods

* Oracle: For each test case, determine whether the test passed
successfully or not

« Sometimes, this requires observing the internal state/behavior of
a component(s) that is, by default, not publicly accessible

* One way to improve observability is to augment the component
with accessor methods

class Order:
... # same as on the previous slide
def get_status(self): # Getter that provides meaningful state
"""Returns the status based on payment and shipping state.

S T p— — Provides visibility into the

return "Shipped" status of the order

elif self. paid:
return "Paid"
else:
return "Pending Payment”

class TestOrder(unittest.TestCase):

def test_order_shipment_fails_if_not_paid(self):
order = Order(100) Use the accessor method

order.ship() # Should not ship since it's not paid as part Of teSt OraCIG

.

.

*
*
“

Check that the order is not shipped before payment
self.assertEqual(order.get_status(), ”Pending Payment")

oG Q. Why not create getters
for “shipped” and “paid”?

Improve Observability through Accessor Methods

* Oracle: For each test case, determine whether the test passed
successfully or not

« Sometimes, this requires observing the internal state/behavior of
a component(s) that is, by default, not publicly accessible

* One way to improve observability is to augment the component
with accessor methods

« Accessors expose details about a component to external entities
 This conflicts with the information hiding principle!
* Trade-offs between observability vs. changeability!

» Consider: Remove/hide testing accessors from the production
system if possible

Design Principles for Testability

Separate business logic from infrastructure code

Improve controllability through dependency injection
Improve observability through accessor methods

Reduce test complexity through separation of concerns

hOon =

Reduce Test Complexity through Separation of Concerns

« Components with multiple responsibilities are harder to test,
require larger test suites, has more complex dependencies

* Recall: Single-responsibility principle (SRP)

» Break large components into smaller ones, each with a single,
cohesive purpose

* |[f there are multiple external dependencies (e.g., API, 1/0, DB)

within a single component, consider separating them into
different components

* If a private function within a component is complex enough to
deserve its own tests, consider extracting it into its own
component

Testing offers clues about the quality of your design

All tests basically do the following three things. If any of them is
difficult, can we re-designed to make it easier?

1. Set up a component to be tested (and its dependencies)
 Can it be designed with fewer dependencies?

2. Invoke a method, after satisfying certain conditions
O Are the conditions hard to satisfy? Can we improve controllability?

3. Assert that the method behaved as expected

J What additional information do we need for the assertion? Can
observability be improved?

Design by Contract (DbC)

Design by Contract (DbC)

 Also called contract-based programming

« Each component is associated with a contract that describes
its expected behavior given some assumption about its input

* An interface specification (from last Wed'’s class) is one type of
contract

Recall: Interface Specification

client implementor
* Pre-condition -
* What the component expects

from the client, expressed as a Input
condition over the function input satisfies precondition
and/or component state computation
* Post-condition
* What the component promises
to deliver, as a condition over satisfies postcondition
the function output and/or output

component state

* Meaning: Pre-condition holds
= post-condition holds

Design by Contract (DbC)

 Also called contract-based programming

« Each component is associated with a contract that describes
its expected behavior (i.e., post-condition) given some
assumption (pre-condition) about its input

* An interface specification (from last Wed'’s class) is one type of
contract

* |n addition to using contracts as a documentation, DbC also
involves checking that a component and its client(s) fulfill their
contract during execution

« Complementary to testing: Detect bugs in scenarios that are
not covered by test cases

Checking Contracts using Assertions

» Assertion: A statement asserting that a condition must hold at
a particular point in the execution
* |f the assertion fails, throw an error or an exception

 Built-in support in many languages; can also simulate using
conditional statements and exceptions (i.e., “if (...)")

class BankAccount {
private double balance;

public void deposit(double amount) {

assert amount > 0 : “Deposit amount must be positive”;
balance += amount;

Checking Contracts using Assertions

» Assertion: A statement asserting that a condition must hold at
a particular point in the execution

 Assume a component method with a pre-condition and a post-
condition

« Add an assertion at the beginning of the method to check that
the pre-condition holds
o |f it fails, it indicates an invalid input from the client

 Add an assertion at the end of the method to check that the
post-condition holds
« |f it fails, it indicates a bug in the method

public class Basket {
private double totalValue = 0;
private Map<Product, Integer> basket = new HashMap<>();

// requires: product is not null; quantity is greater than 0 «
/| effects: product is added to the basket
public void add(Product product, int qtyToAdd) { ™. .

// add the product T Post-condition

// update the total value

Pre-condition

}

/] requires: product exists in the basket
/] effects: product is removed from the basket
public void remove(Product product) {

/] remove the product from the basket

// update the total value

public class Basket {
private double totalValue = 0;
private Map<Product, Integer> basket = new HashMap<>();

// requires: product is not null; quantity is greater than 0

/] effects: product is added to the basket

public void add(Product product, int qtyToAdd) {
/] check the post-condition holds on the exit
assert product != null : “Product cannot be null”;
assert qtyToAdd > 0 : “Cannot add 0 quantity”;

N Assert that the pre-

condition holds
// add the product

// update the total value

/| check the post-condition holds on the exit
assert basket.containsKey(product) : O Assert that the pOSt_

“Failed to add the product to the basket ; condition holds

public class Basket {
private double totalValue = 0;
private Map<Product, Integer> basket = new HashMap<>();

/] requires: product is not null; quantity is greater than 0
/| effects: product is added to the basket
// total value is greater than prev. total value
public void add(Product product, int qtyToAdd) {
/] assert(total value is greater than prev. total value)
assert ?2? <

) How do | write this assertion?

Checking Post-conditions

» Post-conditions are sometimes expressed over the state of the
component before and after a method
* These are also called pre-state and post-state, respectively

* To assert such a post-condition, we must be able to refer to
the pre-state at the end of the method

» Solution: Store the pre-state in an additional local variable

* These variables are also called specification variables

* They do not alter the behavior of the method and add no new
information, but exist for the purpose of specification only

public class Basket {
private double totalValue = 0;
private Map<Product, Integer> basket = new HashMap<>();

/] requires: product is not null; quantity is greater than 0
/| effects: product is added to the basket
// total value is greater than prev. total value

public void add(Product product, int qtyToAdd) { Add a Specification variable
............................... tO Store the pre'State

/] assert(total value is greater than prev. total value)
assert (totalValue >= oldTotalValue); =

) T (R 2 SO Check the post-condition
} over the pre- & post-states

Invariant

A condition over the state of a component that must always hold
throughout execution

* An important part of a contract, in addition to pre- & post-
conditions
» Describes what it means for the component to be in a valid state
* Clients rely on the invariant being true

* |t is the responsibility of the component to ensure that it is never broken
(otherwise, it may break the client’s code!)

 [nvariants are associated with a component, not with a
particular method
* An invariant holds in the pre- and post-state of every method

Examples: Invariant or not?

* A Set data structure does not contain duplicate elements

* The bank account balance is always positive

* The remove method removes the largest element in the input
list

* The list of items in a cart is sorted by the order in which they
were added

* The account balance after deposit is greater than the
previous balance

* The scheduling database does not contain multiple entries
with an overlapping appointment time

Checking Invariants

« Each invariant should be checked in (1) the initial state of the
component and (2) the post-state of each method

* Initial state
* Ensure that the component state is properly set up during the

initialization
« Post-state of every method

* Ensure that the method preserves the invariant after modifying the
component state

* Q. Do we also not need to check the invariant at the
beginning of each method (i.e., the pre-state)?

public class Basket {
private double totalValue;
private Map<Product, Integer> basket = new HashMap<>();

// -'anar-'l_ant: tota-l_Va-l_ue -'Ls never negat-'l_ve URPPTORRRRRSERTELLLL Invarlant documentatlon

// constructor
public Basket() {
// initialize the component state
totalValue = 0;
basket = new HashMap<>();
/| check that the component has been properly constructed

/] i.e., it satisfies the invariant Check that invariant

} tota'l'Va'l_Ue >= @; SR PPPT PP L LT T EL L L bbb hOIdS in initial State

// requires: product is not null; quantity is greater than 0
/] effects: product is added to the basket
public void add(Product product, int qtyToAdd) {

// add the product

// update the total value

// check that the method preserves the invariant Check that invariant

1 1 >= 0; (™ "% NN RN R RN NN R RN R AR R A EEEEEEEEEEEEEEEEEEEEEEEEEE)
} rotatietue holds in the post-state

}

public class Basket {
private double totalValue;
private Map<Product, Integer> basket = new HashMap<>();

// invariant: totalValue is never negative

private boolean invariant() { e Factor out the invariant

return tota'l_va'l_ue >= 0; rrremnsaanenRRaE R R

}

// constructor
public Basket() {

checkInvariant(); ¥

| KIS

public void add(Product product, int qtyToAddy«{-.....

L e, Reuse the invariant
} CheCkInvarlant(); ™™™ aCFOSS every method
public void remove(Product product) { ...

}
}

Design by Contract: Benefits

* Improves reliability: Ensures functions only run with valid
Inputs and produce expected results.

» Easier debugging: Errors are detected immediately when a
contract is violated, rather than producing unexpected
behavior later.

* Defensive programming: Prevents invalid states from
propagating through the system.

* Clear documentation: The contract defines explicit rules for
component inputs and outputs.

Design by Contract: Pitfalls

« Some contract conditions can be difficult to specify as an

assertion
* e.g., 'The total value is equal to the sum of the prices of all items”

» Assertions can introduce performance overhead
« Can disable them in the production-ready version

« Throwing an error effectively terminates the program
execution; this is not always desirable behavior

* An exception may be thrown instead, to be caught and handled by
an external component
* Q. But exceptions also have downsides! What are some of
these?
« Contracts may be too restrictive or weak (recall the lecture on
interface specification!)

Test-Driven Development (TDD)

Test-Driven Development

2. Write a test

Request
software

* Idea: Write tests first before (%) Test Fai
writing any code

» Tests will fail; write minimal
code to pass the tests

« An approach to developing [1-Feature R

Test Driven
Development

3. Write code

@ All Test Pass

« Claim: Result in more tests
written, less buggy code,
and reduced debugging time

5. lterate |

4. Clean code

TDD Example: Factorial

« Goal: Write a program that computes a factorial

* Q. What are possible inputs that we need to test for?
 Factorial of 0
» Factorial of a positive number
 Factorial of a negative number
 Factorial of a non-integer

TDD from Requirements

 Creation of tests are driven by a feature request or a system
requirement (e.g., achieve a quality attribute)

* Given a requirement, think of different use case scenarios
(“variants™)

« Each scenario variant becomes a test case to pass

« Example: Scheduling application
 Requirement: Allow the user to search & book an appointment

« Scenarios:

* Log in, view available slots, select a time slot, enter patient info, confirm
appointment

* Log in, view available slots, no slots available

* Log in, view available slots, select a time slot, enter patient info, cancel
appointment

e others...

TDD: Benefits & Pitfalls

* Discussion: What are some benefits of TDD? Potential
downsides?

TDD: Benefits & Pitfalls

By writing tests first, you are forced to think about requirements
and different scenarios — this is always beneficial!

« And you are more likely to end up with tests than if you hadn’t applied TDD

* TDD is code-centric: The goal is to write code that passes all tests
* Risks of neglecting high-level design considerations (e.g., changeability)
« TDD does not exclude good design, but the focus on passing tests may put
design as a secondary concern
* Following TDD does not automatically lead to high-quality design!

« Still need to think carefully about component responsibilities, and
assumptions about the client (i.e., contracts!), corner cases, and designing
to be ready for changes

Summary

* Exit ticket!

	Slide 1: 17-423/723: Designing Large-scale Software Systems
	Slide 2: Logistics
	Slide 3: Acknowledgements
	Slide 4: Learning Goals
	Slide 5
	Slide 6: Testing Basics
	Slide 7: Testing Basics
	Slide 8: Testability
	Slide 9: Example: Online Shopping Site
	Slide 10: Example: Online Shopping Site
	Slide 11: Dependencies make testing hard
	Slide 12: Controllability & Observability
	Slide 13: Dependencies make testing hard
	Slide 14: Controllability & Observability: Examples
	Slide 15: Controllability & Observability: Examples
	Slide 16: Controllability & Observability: Examples
	Slide 17: Test Doubles
	Slide 18: Mock Component
	Slide 19
	Slide 20
	Slide 21: Mock Component
	Slide 22
	Slide 23: Changeability & Testability
	Slide 24: Changeability & Testability
	Slide 25: Design Principles for Testability
	Slide 26: Design Principles for Testability
	Slide 27: Separate Business Logic from Infrastructure Code
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Recall: Dependency Inversion Principle (DIP)
	Slide 32: Recall: Hexagonal Architecture
	Slide 33: Example: Shopping Cart Checkout
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Separate Business Logic from Infrastructure Code
	Slide 38: Design Principles for Testability
	Slide 39: Improve Controllability through Dependency Injection
	Slide 40
	Slide 41
	Slide 42: Dependency Injection & Dependency Inversion Principle (DIP)
	Slide 43
	Slide 44: Improve Controllability through Dependency Injection
	Slide 45
	Slide 46: Design Principles for Testability
	Slide 47
	Slide 48: Improve Observability through Accessor Methods
	Slide 49
	Slide 50: Improve Observability through Accessor Methods
	Slide 51: Design Principles for Testability
	Slide 52: Reduce Test Complexity through Separation of Concerns
	Slide 53: Testing offers clues about the quality of your design
	Slide 54
	Slide 55: Design by Contract (DbC)
	Slide 56: Recall: Interface Specification
	Slide 57: Design by Contract (DbC)
	Slide 58: Checking Contracts using Assertions
	Slide 59: Checking Contracts using Assertions
	Slide 60
	Slide 61
	Slide 62
	Slide 63: Checking Post-conditions
	Slide 64
	Slide 65: Invariant
	Slide 66: Examples: Invariant or not?
	Slide 67: Checking Invariants
	Slide 68
	Slide 69
	Slide 70: Design by Contract: Benefits
	Slide 71: Design by Contract: Pitfalls
	Slide 72
	Slide 73: Test-Driven Development
	Slide 74: TDD Example: Factorial
	Slide 75: TDD from Requirements
	Slide 76: TDD: Benefits & Pitfalls
	Slide 77: TDD: Benefits & Pitfalls
	Slide 78: Summary

