
17-723: Designing
Large-scale
Software Systems
Design for Interoperability

Tobias Dürschmid

2Designing Large-scale Software Systems - Design for Interoperability

Learning Objectives
• Describe interoperability and its importance as a quality attribute
• Generate design options for interoperability by applying appropriate

designing principles
• Communicate the interoperability of design options via appropriate

design abstractions of interface descriptions
• Evaluate the interoperability of a given design option for a given context
• Describe common trade-offs between interoperability and other quality

attributes

Evaluate

Communicate

Generate

3Designing Large-scale Software Systems - Design for Interoperability

Case Study: Global Distribution System (GDS)

Airline 1

GDS

Airline 2

Airline 3

Booking
System 1

Booking
System 2

Request Flights
Book Flights

Register Flights
Sell Flights

Manage Passengers
Manage Baggage

4Designing Large-scale Software Systems - Design for Interoperability

Definition of Interoperability

The degree to which two or more systems (or components) can

usefully exchange meaningful information in a particular context.

Interoperability does not exist in isolation,
but only with respect to other systems

Why should I care about Interoperability?

5Designing Large-scale Software Systems - Design for Interoperability

Your System is NOT a Lonely Island

Why should I care about Interoperability?

6Designing Large-scale Software Systems - Design for Interoperability

Lesson Learned:
Interoperability Lets You Use Services

Rather than implementing the functionality of external

services yourself, you can use existing service providers

E.g.: Authentication, Cloud Storage, Payment services,

Content Delivery, Analytics & Monitoring, Google Maps, …

7Designing Large-scale Software Systems - Design for Interoperability

Lesson Learned:
Interoperability Can Improve Usability

Users can bring their data from another system

or transfer data from your system into another system

(e.g., electronic patient records in medical systems)

8Designing Large-scale Software Systems - Design for Interoperability

Lesson Learned:
Interoperability Supports
Cross-Platform Solutions

Many systems need to interface with separately developed
Systems (e.g., Mobile Apps, IoT systems, Microservices, …).

Interoperability simplifies communication between them.

9Designing Large-scale Software Systems - Design for Interoperability

How to Describe Interoperability
Requirements?

Scenario
1. The Systems that should Collaborate

2. The Types of Data they Should Exchange

Measure
The Percentage of Data that has been

Exchanged Correctly

In-Class Activity: Describe
Interoperability Requirements for GDS

This Run-Time
Measure evaluates
how successful an

implementation of an
interoperability
mechanism is.

10Designing Large-scale Software Systems - Design for Interoperability

What makes GDS Interoperable?

Airline 1

GDS

Airline 2

Airline 3

Booking
System 1

Booking
System 2

Request Flights
Book Flights

Register Flights
Sell Flights

Manage Passengers
Manage Baggage

In-Class Activity: Invent a Design Principle to
Design Systems for Interoperability

11Designing Large-scale Software Systems - Design for Interoperability

Design Principle for Interoperability:
Create Shared Interfaces / Data Formats

Evaluate

Communicate

Generate

1. List all data that needs to be exchanged

2. Define an interface / data format that supports all data

3. Implement serialization & deserialization

12Designing Large-scale Software Systems - Design for Interoperability

Design Principle for Interoperability:
Create Shared Interfaces / Data Formats

Build Abstractions
The interface / document format should
not expose any implementation details
of systems / components.

Ensure Language- and

Platform-Independence

Evaluate

Communicate

Generate

The format should be supported by all
programming languages, operating systems,
and devices.

13Designing Large-scale Software Systems - Design for Interoperability

Common Technique to Implement
Shared Interfaces: REST APIs
• REST (representational state transfer) is a stateless protocol to

exchange data in client-server systems via HTTP / HTTPS:
• POST – Creates a Resource
• GET – Reads a Resource
• PUT – Updates a Resource
• DELETE – Deletes a Resource

• Resources are often described via XML, YAML, JSON, or HTML

Evaluate

Communicate

Generate

14Designing Large-scale Software Systems - Design for Interoperability

Example REST API:
GDS API
• Request: POST /getFlights

…
"travelPreferences": {
 "flightType": "Direct",
 "maximumStopsQuantity": 1
},
"itineraryParts": [{
 "departureAirportCode": "PIT",
 "arrivalAirportCode": "DFW",
…]}
…

15Designing Large-scale Software Systems - Design for Interoperability

Alternative Techniques to Implement
Shared Interfaces (besides REST)

Evaluate

Communicate

Generate

Calling a function on a remote server as if it were local. Can
be stateful. Functions and actions beyond CRUD. Good for
complex calculations. Can use multiple document formats.

Can be stateful. More complex. Sometimes slower. Has
more security features. Has built-in error handling. Good
for distributed enterprise environments. Uses XML.

Server-side schema defines types, enabling checking of
data structure conformance. Good for large, complex, and
interrelated data sources. Uses JSON.

RPC
(Remote Procedure Call)

SOAP
(Simple Object Access Protocol)

GraphQL

16Designing Large-scale Software Systems - Design for Interoperability

Common Technique to Test Compatibility:
XML / JSON / YAML Schema

• A schema describes the structure of document

• Schemas list attributes, their possible values, and complex types
(e.g., sequences, recursive types) for a document

• Validation of a document against a schema can be done
automatically to test compatibility at run-time

Evaluate

Communicate

Generate

17Designing Large-scale Software Systems - Design for Interoperability

Example JSON Schema
"properties": {
 "departureAirportCode": {
 "type": "string"
 "pattern": "^[A-Z]{3}$"
 },
 "price": {
 "type": "number",
 "minimum": 0,
 "exclusiveMinimum": true
 }
},
"required": ["departureAirportCode", "price"]

Constraints on the Type of a Property

Constraints on Document Structure

Constraints on the Values of a Property

Evaluate

Communicate

Generate

18Designing Large-scale Software Systems - Design for Interoperability

Case Study
Mars Climate Orbiter

$193 million

Flight System Software
Developed by NASA JPL

Ground Software
Supplied by Lockheed Martin
(US-based sub-contractor)

Spacecraft Lost Due to Lack of
Semantic Interoperability

(Shared Interpretation of Shared Data)

Expected commands in
 N (SI units)

Sent commands in
lbf (US Customary units)

Command
Interface

Question: How could they have
prevented this bug?

19Designing Large-scale Software Systems - Design for Interoperability

Lesson Learned:
Syntactic Interoperability is Not Enough

Data exchanged between
systems / components must be
interpreted in the same way by
all systems / components.

In-Class Activity: Invent a Design Principle
for Semantic Interoperability

<plant>

20Designing Large-scale Software Systems - Design for Interoperability

Design Principle for Interoperability:
Define the Semantics of Shared Data
• Document Interfaces and their Semantics (e.g., What units are

implied? Does price include tax? MM/DD/YY or DD/MM/YY? What
coordinate system is used a reference frame?)

• Use Shared Dictionary of Items or Agree on Vocabulary
(e.g., doughnut or donut? 单丛茶 or单枞茶?)

• Write Integration Tests for the Systems

<plant>

21Designing Large-scale Software Systems - Design for Interoperability

Interface Descriptions

Semantic
View

Describe the purpose / meaning of the resource / action:
• Side-effects: Changes to the state of a resource or

environment
• Usage restrictions: Who can perform this action?
• Error Handling: What errors can occur and why?
• Examples: Examples of outputs for a given input

Syntactic
View

Describe document format, the actions that can be
performed, their parameters, and outputs.

Evaluate

Communicate

Generate
In-Class Activity: Describe The Semantic

View of GDS Flight Booking API

22Designing Large-scale Software Systems - Design for Interoperability

Example: Semantic View of GDS Booking
• Purpose: The airline confirms a requested booking
• Side-effects: money is charged, seat is marked as sold,

can be canceled within 1 hour
• Usage restrictions: Authorized booking systems
• Errors: Invalid Format, Unauthorized, too many

requests, …
See here: https://developer.sabre.com/docs/rest_apis/trip/orders/booking_management

Evaluate

Communicate

Generate

https://developer.sabre.com/docs/rest_apis/trip/orders/booking_management

23Designing Large-scale Software Systems - Design for Interoperability

Guidelines on Interface Documentation

• Focus on how elements interact and their externally visible
effects, not their implementation

• To support changeability of the implementation, expose only what
is needed to use the interface (See Information Hiding)

• Keep the documentation minimal and use-case oriented to
increase readability

Evaluate

Communicate

Generate

24Designing Large-scale Software Systems - Design for Interoperability

GDS Interface Documentation
Evaluate

Communicate

Generate
In-Class Activity: Describe Pros and Cons of

the GDS Interface Documentation

25Designing Large-scale Software Systems - Design for Interoperability

GDS Interface Documentation

In-Class Activity: Describe Pros and Cons of
the GDS Interface Documentation

Evaluate

Communicate

Generate

Semantic
Interoperability

Via Shared Dictionary

Semantics of Level Are Unclear

26Designing Large-scale Software Systems - Design for Interoperability

What makes GDS Less Changeable?

In-Class Activity: Generate Design Options to Increase
the Changeability of GDS Booking Options

Airline 1

GDS

Airline 2

Airline 3

Booking
System 1

Booking
System 2

Request Flights
Book Flights

Register Flights
Sell Flights

Manage Passengers
Manage Baggage

27Designing Large-scale Software Systems - Design for Interoperability

Making GDS More Changeable
Extensible Interfaces:

• Offers can contain a dynamically-defined add-ons
• Add-on: (price, name, description, id)

• price(int): The price in cents (excl. tax) additionally charged when this add-on
is selected

• name(str): The name of the add-on as shown to the user (in UTF-8)
• description(str): A short description shown to the user in order to decide if

they want to purchase the add-on (in UTF-8)
• id(str): Unique identifier of this add-on starting with the flight number (in ASCII)

• A list of add-ons is added to a flight listing. The booking API needs to
add an optional list of add-on ids to identify requested add-ons.

In-Class Activity: What Disadvantage does this have
over the existing GDS?

Harder to Implement

28Designing Large-scale Software Systems - Design for Interoperability

Lesson Learned: Interoperability Often
Conflicts with Changeability
• Shared interfaces and data format mean changes have

to be implemented in all cooperating systems

• We cannot localize the interface change to a single
system, so extensions / changes require a new version
of the interface, which breaks interoperability

29Designing Large-scale Software Systems - Design for Interoperability

A more complex interface / data

format is less likely to be adopted
by many systems due to higher
implementation cost.

An interface / data format that

supports more use cases and
potential extensions is more
likely to be adopted.

Measure the Effort to
Implement the Interface in all

Systems / Components

Measure the Variability
Allowed by the Interface / Format

Evaluate

Communicate

Generate

These Design-Time Measures evaluate how likely a
design for interoperability is to succeed in a practical

setting. They can be used in quality attribute specifications.

How to Evaluate Practical Interoperability?
Often in Conflict

30Designing Large-scale Software Systems - Design for Interoperability

Design Pattern for Interoperability:
Use Adapters to Connect Interfaces
Problem: Two systems use different interfaces
(e.g., different data formats, different protocols, …)

Solution: Create an adapter component that translates
between the two interfaces.

Your System Their SystemAdapter

Your System Their System

XML-JSON Translation is localized here

XML JSON

Evaluate

Communicate

Generate
Question: Does this only work for

Syntactic Interoperability?

31Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Microservices

Microservices can be seen as interoperating components.

They can be written in different programming languages and
exchange data via REST APIs / SOAP APIs / RPC.

Orchestration of microservices can require complex interactions.

Design Principles From This Lecture Apply!

Payment Service REST API Authentication Service

32Designing Large-scale Software Systems - Design for Interoperability

Bounded Context

Each microservice has its own data model of the entities it is

handling to separate concerns. Interfaces should be minimal.

Payment Service Authentication ServiceREST API

User(id, name, payment
methods, bills, address)

User(id, password, email,
security questions)

Often improves Changeability

User(id)

33Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Healthcare Systems
Patients want to get their data (EMR = electronic medical record)
from one hospital and bring it to another hospital

Source DestinationEMR

In-Class Activity: How can this data
be transferred between hospitals?

In-Class Activity: Specify
Interoperability Requirements

34Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Healthcare Systems
Source DestinationEMR

Central Network

(Like GDS)
Manual Data Transfer

(Prints, CDs)

+ Better Usability / Flexibility

- Higher Development Cost

- Hospitals Need to Share EMR
Interface

+ Fewer Security Concerns

Keep Patients

- Higher Labor Cost for Data
Input

+-

In-Class Activity: What kind of data
needs to be exchanged (Syntax)?

35Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Healthcare Systems

EMR

Name, date of birth, gender, contact details
Patient

Demographics

Past medical conditions, surgeries,
hospitalizations, allergies, immunizations, …
Format: List of structured documents

Medical
History

Results of various tests such as vitals,
blood tests, imaging scans, biopsies, …
Format: images, tables, free text

Test
Results

Source DestinationEMR

In-Class Activity: How to Ensure
Semantic Interoperability of EHRs?

36Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Healthcare Systems
Source DestinationEMR

RDF (Resource Description Framework)
OWL (Web Ontology Language)

Semantic Data
Models

<plant>SNOMED CT (Systematized Nomenclature
of Medicine Clinical Terms)

Standardized
Terminologies

Data mapping and transformation between
different formats / standards / units

Adapters

37Designing Large-scale Software Systems - Design for Interoperability

Interoperability for Industry 4.0 Systems

In-Class Activity: What do you need to
make smart factories interoperable?

Sensors ActuatorsControl

38Designing Large-scale Software Systems - Design for Interoperability

Please Complete the Exit Ticket in Canvas!

39Designing Large-scale Software Systems - Design for Interoperability

Summary
Interoperability Is Important to Offer / Use Services

To build Interoperable Systems, Create Shared Interfaces / Data Formats

Syntactic Interoperability is Not Enough → Semantic Interoperability

Define the Semantics via Interface Documentation and Vocabulary

Interoperability Often Conflicts with Changeability

Use Adapters to Connect Interfaces
Credits: These slide use images from Flaticon.com (Creators: Freepik, Eucalyp, LAFS, vectorslab, Vector Stall) and free-vectors.net

<plant>

