
Identifying the 
Problem Space

17-423/723 Designing Large-Scale Software Systems

Recitation 1
Jan 17, 2025



Recap: Problem vs. Solution Space



Problem space (aka domain or world)
Physical entities in the real world, their 
behaviors & relationships
Part of the world that software may 
influence, but cannot directly control 

Solution space (aka machine)
A product (i.e., software) to be developed 
to solve the customers’ problem
A combination of software components 
that you have creative control over

Problem vs. Solution Space

Machine
(software)

World
(domain)



Satisfaction Argument

Requirement (REQ): What the system must achieve, in terms of desired effects on the world
Specification (SPEC): What software must implement, expressed over the shared interface
Domain assumptions (ASM): What’s assumed about the behavior/properties of the world; 
bridges the gap between REQ and SPEC

SPEC /\ ASM ⇒ REQ

“If my software is implemented 
correctly (SPEC) and the world 
behaves as assumed (ASM), 
then the system achieves its 
requirement (REQ)”



Context Model for LDW

Domain
Entities

Requirement (REQ)

Interactions

Machine entity

“refers to”



A recipe for building a context model

1. State a requirement to be achieved by the system (REQ)
2. Identify entities that are referenced by the requirement
3. Identify other entities that interact with those entities in the real world
4. Connect domain entities to the software component 
5. Design the specification (SPEC) on the software component that is needed to 

satisfy REQ
6. Identify domain assumptions (ASM) that are needed along with SPEC to 

satisfy REQ
7. Check whether any of the assumptions may be violated in practice
8. If so, relax ASM to reflect possible violations and design a new SPEC to 

ensure that SPEC /\ ASM => REQ



Case Study: Ambulance Dispatching System



Ambulance Dispatching System: Traditional Workflow

● Dispatcher receives an emergency 911 call and determines the location and 
severity of the incident

● Dispatcher looks up the list of nearby ambulances on a computer 
● Dispatcher contacts and dispatches one of the available ambulances to the 

incident location
● Ambulance crew arrives at the location and treats the patient and/or 

transports them to a hospital 



New, Automated Dispatching System

● Automatic Dispatch Software: The 911 operator enters the details of the 
incident into new software. The software decides which ambulance to allocate 
for the incident.

● Automated Ambulance Localisation: A GPS-based system is used to keep 
track of ambulances’ locations.

● Mobile Data Terminals, installed inside each ambulance: The ambulance 
crew uses the terminal to communicate their status to the Automatic Dispatch 
Software (when they arrive at the incident scene, when they hand over the 
patient to a hospital, etc.,)

● System requirement: Ensure the arrival of an ambulance at an incident 
location within 15 min.



Breakout Activity

● Task 1: Develop a context model for the new ambulance dispatching system. 
Identify the list of domain assumptions (ASM) and software specifications 
(SPEC) that are needed to satisfy the requirement (REQ).

● Task 2: Share and describe your context model to another breakout group. 
Looking at the other team’s context model, identify assumptions that may be 
violated in practice. 

● Task 3: Based on the feedback from the other team, discuss how you would 
modify the specifications (SPEC) to deal with the violated assumptions 
(ASM).



Case Study: London Ambulance System (LAS)



Summary

● Domain assumptions are just as critical in achieving requirements
○ If you ignore/misunderstand these, your system may fail or do poorly (no 

matter how perfect your software is)
● Identify and document these assumptions as early as possible
● Some of the assumptions may be violated in practice
● The specification of the software should be designed with these assumptions 

& their possible violations in mind


