Understanding Systems
with Design Models

17-423/723 Software System Design

Recitation 2
Jan 23, 2026

Recap: Design Abstractions

Notations for Common Design Abstractions
Component diagrams: What are major components in the system and how do
they communicate with each other?

State machines: What states can the system be in, and what events cause it to
change its state?

Data models: What types of data does the system store and what are their
relationships?

Sequence diagrams: How different actors (domain entities & system
components) collaborate to carry out some functionality?

Component Diagram: Voting System

lookUpVoter

el

Registration
System

checkRegistered

e

castBaIIo;t

E Voter

Interface

process

Ballot

storeBallot

Ballot
Processor

\ 4

Ballot DB

send
Ballots

_ | Central Ballot | _

Server

obtain
Ballots

Vote
Counting
System

A

counts

Election
Official
Interface

elegtionResults
——E—P

State Machine: Voter Interface

Authenticating
Voter

enterlD voterRegistered

Idle

(Initial) timeout

Ballot

Displayed
voterExit timeout selection
Waiting
Vote Confirmation
Recorded

confirm

Today: Using Design Models for System Understanding

e In addition to designing a new system, design models can also be used to
understand the behavior and structure of an existing system
o This is sometimes called reverse engineering
e There are many program analysis tools that can be used to extract different
types of models from the code
e Today, we will explore how generative Al can be used to aid in this process

Case Study: OpenCode

e An open source Al coding assistant
e https://opencode.ai/
e https://qithub.com/anomalyco/opencode

https://opencode.ai/
https://github.com/anomalyco/opencode

Activity #1. Component Diagram

e Pair up with another person
e Use an LLM of your choice (e.g., Gemini, ChatGPT, Claude)
e Prompt the LLM to generate a component diagram

o Hint: Ask it to generate the diagram in a format that can be displayed using an
existing visualizer (e.g., Mermaid or PlantUML)
e Explore the diagram to answer the questions from the lecture; e.g.,
o How do components communicate with each other?
o What are the responsibilities of each component?
o What if a component fails? How does it affect the overall system?

e If needed, use additional/modified prompts to simplify the diagram or extract
more information about the system
e Post a screenshot of your component diagram on Slack #recitations

Component Diagram: Sample Prompt

I need your help understanding the system design of an open-source software project. The GitHub
repository is: https.//github.com/anomalyco/opencode

Please analyze this codebase and create a component diagram. A component diagram describes a
high-level architecture of the system in terms of its major components and how they communicate with
each other. The diagram should contain:

* Components, each of which is responsible for carrying out a distinct unit of functionality, represented as
rectangular boxes

* Connections, each a directed edge between a pair of components, labeled with an event (e.g., an API
call) or data flow

* External systems, actors, or libraries that the software interacts with

* Component responsibilities, included as text annotation.

You should produce the following deliverables:

* The diagram should be in PlantUML format so it can be rendered

* A brief explanation of each diagram

* Key insights about the system design and behavior based on the diagrams

Activity #2: State Machine

e Prompt the LLM to generate a state machine for one of the core components
in the system (identified through the component diagram)

e Explore the diagram to answer the questions from the lecture
o What are possible error states? How can the machine reach those states?
o Can the machine get stuck in a state due to an event that never takes place?
o Can it getinto a cycle, and is that acceptable?
o Are there ways to improve the component logic based on what you found above?

e Post a screenshot of your state machine on Slack #recitations

State Machine: Sample Prompt

Please analyze the same codebase and generate a state machine from it. A state
machine models the dynamic behavior of a component/system through its
lifecycle. It should show:

* States that the system or key components can be in (represented as circles)

* Initial state (shown as a bolded circle)

* Transitions between states (arrows between states)

* Events/triggers that cause state transitions (labels on arrows)

Focus on the most important behavioral aspects, such as the application lifecycle,
core workflow states, or the state management of critical entities.

Discussion

e \What are benefits and potential risks of using design models to understand an
existing system?

e How would you validate a generated model to ensure that it accurately
reflects the system?

Summary

e Design models can help us understand existing systems, not just design
new ones

e Different models reveal different aspects (structure vs. behavior vs. data)

e LLMs can be useful for reverse engineering but require critical evaluation

e Always validate Al-generated diagrams against actual code/behavior

