17-723: Designing Large-scale Software Systems

Recitation: Attribute-driven design Feb 2, 2024

Last Lecture

Carnegie Mellon University This is called Attribute-Driven Design (ADD)

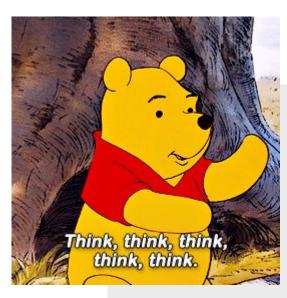
How to Make Design Decisions in a Large Design Space?

Iteratively improve your design:

- **1. Select** a quality attribute to improve (iteration goal)
- 2. Chose one or more parts of the system to refine
- 3. Find & sketch candidate solution & describe design decisions
- 4. Analyze candidate solution for iteration goal and other quality attributes
- 5. Iterate if necessary

This lecture:

Demonstration of Attribute Driven Design (ADD)


Designing an online Learning Management System (LMS) eg. Canvas, Blackboard

Quality Attributes for an online LMS

Quality Attributes for an online LMS

- Performance: responsiveness and fast loading
- Security: prevention of unauthorized access
- Scalability: handle growing number of courses and students
- Usability: easy navigation and access of learning materials
- Reliability: providing uninterrupted access
- others

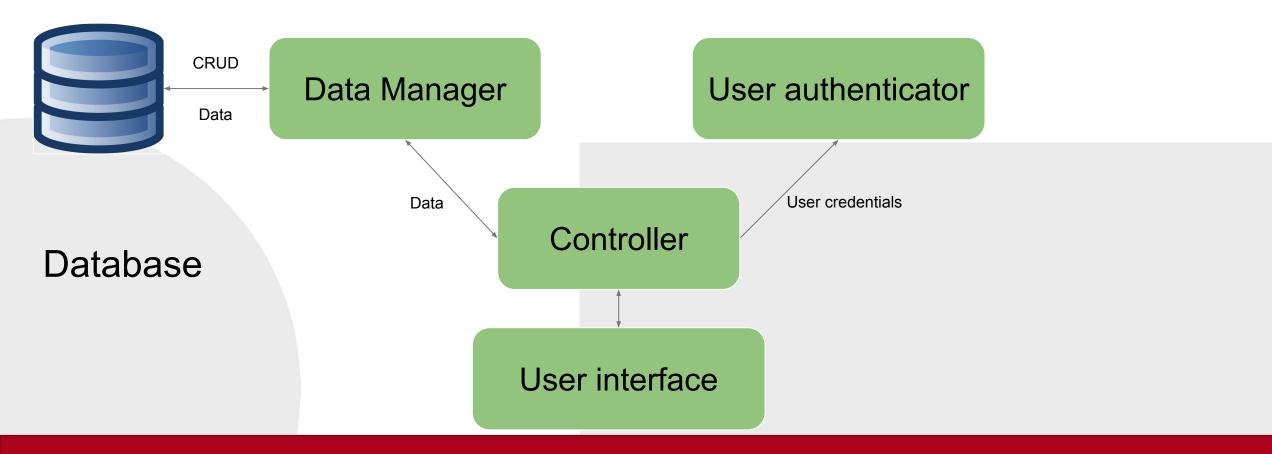
Step 1: Select a Quality Attribute

- Performance: average response time for material access
- Security: only students can access their portal
- Scalability: response time is not affected by increasing the number of courses and students
- Usability: satisfactory student experience accessing materials without prior training
- Reliability: providing uninterrupted access under normal operating conditions

Iteration goal:...?

Step 1: Select a Quality Attribute

- Performance: average response time for material access
- Security: only students can access their portal
- Scalability: response time is not affected by increasing the number of courses and students
- Usability: satisfactory student experience accessing materials without prior training
- Reliability: providing uninterrupted access under normal operating conditions


Iteration goal: Reduce the average response time for users

Step 2: Choose a part of the system to refine

System components:

- User Interface
- Data Manager
- Database
- User Authentication and Authorization

ADD Recitation

Step 2: Choose a part of the system to refine

System components:

- User Interface
- Data Manager
- Database
- User Authentication and Authorization

Step 3: Find candidate solution and describe design decisions

- 1. Query Optimization: Analyze slow queries and optimize them
- 2. Caching Mechanism: Choose caching strategy based on data access patterns and requirements
- 3. Load Balancing: Distribute incoming traffic and prevent bottlenecks

Which other QAs might be affected by our candidate solution?

Performance

- Security
- Scalability
- Usability
- Reliability

Which other QAs might be affected by our candidate solution?

Performance

- Security
- Scalability
- Usability
- ✓ Reliability

Candidate Solution	Scalability	Reliability
Query Optimisation	Over optimization may limit scalability	Query times 👃 -> database contention ↓
Caching mechanism	Repeated data queries 🕹 -> more users can be served	Stale data may reduce reliability
Load Balancing	Multiple servers can serve larger number of users	Data consistency issues may reduce reliability

Step 5: Iterate if necessary

- Performance testing: Simulate scenarios to identify unforeseen situations
- User feedback: Gather user feedback in terms of system responsiveness

Based on results -> iterate!

Exercise: ADD for another QA in our system!

QA: security!

- Performance: average response time for material access
 Security: only students can access their portal
 Scalability: response time is not affected by increasing the number of courses and students
- Usability: satisfactory student experience accessing materials • without prior training Reliability: providing uninterrupted access under normal
- operating conditions

Step 1: Select a Quality Attribute

- Performance: average response time for material access
- Security: only students can access their portal
- Scalability: response time is not affected by increasing the number of courses and students
- Usability: satisfactory student experience accessing materials without prior training
- Reliability: providing uninterrupted access under normal operating conditions

Iteration goal:...?

Step 1: Select a Quality Attribute

- Performance: average response time for material access
- Security: only students can access their portal
- Scalability: response time is not affected by increasing the number of courses and students
- Usability: satisfactory student experience accessing materials without prior training
- Reliability: providing uninterrupted access under normal operating conditions

Iteration goal: Provide robust student authentication capabilities

Step 2: Choose a part of the system to refine

System components:

- User Interface
- Data Manager
- Database
- User Authentication and Authorization

Step 2: Choose a part of the system to refine

System components:

- User Interface
- Data Manager
- Database
- User Authentication and Authorization

Step 3: Find candidate solution and describe design decisions

- 1. Multi Factor Authentication: Choose suitable MFA method (SMS codes, authenticator apps etc.) to enhance user security
- 2. Biometric Authentication: Use facial recognition/fingerprint recognition
- 3. SSO Authentication: Use institution authentication portal

Which other QAs might be affected by our candidate solution?

- Performance
- ✓ Security
- Scalability
- Usability
- Reliability

Which other QAs might be affected by our candidate solution?

- Performance
- ✓ Security
- ✓ Scalability
- Usability
- ✓ Reliability

Candidate Solution	Scalability	Reliability
Multi Factor Auth	As number of users grow, generating codes/prompts might decrease scalability	if any one authentication is down, reliability decreases
Biometric Auth	Since authentication is done on user device, scalability remains tractable	False positives and false negatives might reduce reliability
SSO Auth	SSO systems are capable of handling large user requests so system scalability is un affected	SSO introduce a single point of access failure when downtime occurs hence reliability decreases

Step 5: Iterate if necessary

- Performance testing: Simulate scenarios to identify unforeseen situations
- User feedback: Gather user feedback in terms of system responsiveness

Step 5: Iterate if necessary

- Performance testing: Simulate scenarios to identify unforeseen situations
- User feedback: Gather user feedback in terms of system responsiveness

Exercise: Simulate some possible scenarios Based on results -> iterate!

Summary

Demonstration of Attribute Driven Design (ADD)

- Selection of QA
- System component identification
- Propose Candidate solutions
- Analyze them with respect to other QAs
- Iterate based on feedback/scenarios