17-723: Designing
Large-scale
Software Systems

Recitation on Brainstorming Design Alternatives

Tobias Durschmid

Carnegie
Mellon
University

Recap of Design Generation Tips
Think of Many Design Alternatives [JOAYC S

X

Start By Considering Existing Solutions M

%% Avoid Over-Using Design Patterns

Avoid Anchoring to Your Initial Ideas

™~ MM N

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Recap of Brainstorming Steps

. D tralized
1) Write Ideas on Postits

Client-Server Peer-To-Peer

File Sharing
3) Combine Ideas
Data Cloning

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Recap of Tips to Solve Complex Design
Problems

* Divide And Conquer To Solve Complex Problems
» Split a complex problem into smaller sub-problems

» Solve Simpler Problems First
» Solution to simpler problem might be incomplete, -

but can be extended later

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

VieDon < Step 0: Divide And Conquer - Identify Sub-Problems

University

Design a Digital Monopoly Game!
LT

%k
=Illg=

« Changeability: The effort to change or

replace the Ul is minimal

» Changeability: The effort to change or
replace fields and chance cards is

minimal

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Sub-Problems

* How to update the Ul (balance, position
of players, houses & hotels) when the
state of the game changes?

* How to have a diverse range of possible
chance card effects on the player while
allowing changeability?

(give/charge money, go to jail, go to next
railroad, lose houses / hotels, roll again,

)

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

_
]
]
]
]
B

Data Server File Sharing

Step 1: Write Ideas on Post-lts [Fss |:| Decentralizeoghy

Client-Server Peer-To-Peer

Step 2: Cluster Ideas by Similarity |]

Data Server

Step 3: Combine Ideas

Component Name | Collaborators

Step 4: Model CRC Cards

Responsibilities

Step 5: Model Interactions

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Recap of CRC Cards

A common technique for modelling software design options

Class / Component / Role Collaborators
[Name of the component] [List of other components that
Responsibilities this component starts to

[Describe this component’s obligations to interact with]

perform a task or know information]

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Step 5: Model Interactions

Generate Design Alternatives!

* How to update the Ul (balance, position of
players, houses & hotels) when the state of

the game changes”?

* QA Req (Changeability): The effort to
change or replace the Ul is minimal

* Hint: Consider the sources of updates (what
can trigger an update) as well as the Ul
elements that need to update

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Model

View

Carnegie
Mellon
University

Example Ul Design Decision
S:rrnn:onent g‘la;::;r; on V! gg:terlc;}ﬁ;w-

depends on Ul game Game
component, Logic

uses Observers

s

Changes in game component Observers in Ul listen for Implement the
are passed to a Facade of Ul- changes in the models of MVC

Component. Each object calls the game component. architectural
Ul functions only on the pattern
Facade. Ul input is passed to a

Ul input is returned by Facade of the game

executing a lambda provided component.
to the Facade

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Example Ul Design Decision o
Game Ul comp. | Model-View- |
component LOiC depends on Controller |
depends on Ul - game Game L

Ul component, | Logic |

uses Observers —

- Easy implementation - Loose coupling - separation of .
due to simple, direct - Simpler initialization concerns

calls update calls

- Initialization requiresa - Many small - Intended for
mocked Ul updates multiple different
-> complexity simultaneous
views
- Complexity

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Example Ul Design Decision

Responsibilities
Implement the logic of the game

Send updates to registered Ul

Component: Ul Collaborators
Responsibilities Game Logic
Display information
Implement update methods
Register as observer
Component: Game Logic Collaborators
Ul

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

register Ul . update

Game Logic

Carnegie
Mellon
University

register Ul l update

Example Interaction Game Logic

| Ul | | Game Logic I

+ +

registerUl() >

7'balanceChanged(newBaIance, player)

update(“Balance”,
newBalance, player)
T
:
I

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Ul

gﬁiﬂ)«;gi-e | UlFacade |——>| BalanceDispIayl
University update balance

register Ul I update

Refined Example Interaction Game Logic
| GameFacade |<—| Player |
update balance

I p1_display: BalanceDisplay | | ui:UIFacade | |_game:GameFagade || p1: Player |

I I I
+ +

registerUl()

updateBalance(
! :7— newBalance)

<€
€ update(“Balance”, balanceChanged(
updateBalance(newBalance, “p1”) newBalance, p1)

newBalance)

*
|
1

e —

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Model View

Step 5: Model Interactions |} ’E]

Generate Design Alternatives!

=n|

* How to have a diverse range of possible
chance card effects on the player?
(give/charge money, go to jail, go to next
railroad, lose houses / hotels, roll again,

)

« Changeability: The effort to change or
replace fields and chance cards is minimal

 Hint: Also consider how to create and
store chance cards.

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Example Design Decision

Reading from JSON Abstract Factory Design Pattern

Load cards and fields from a Implement an Abstract Factory that
JSON file. creates and returns new instances
Then automatically create an of fields and cards.

object and call setters using
the retrieved data

L
L
_
L
—
B

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Example Design Decision

JSON Abstract Factory

- Values can be changed Homogenous with the rest of the
intuitively in an external software, all written in the same
file language
- Separation of code and Tools of the programing environment
data can be used for manipulation
- Corner fields can be identified better
due to method naming

L
L
_
L
—
B

- Not self-contained - Data is not easily replaced & modified
within the software with external tools

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Carnegie
Mellon
University

Summary

 Think of Many Design Alternatives

* Avoid Anchoring to ldeas

 Start By Considering Existing Solutions
* Avoid Over-Using Design Patterns

 Divide And Conquer to Solve Complex Problems
» Solve Simpler Problems First

Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

