
17-723: Designing
Large-scale
Software Systems
Recitation on Brainstorming Design Alternatives

Tobias Dürschmid

2Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Recap of Design Generation Tips
Think of Many Design Alternatives

Avoid Anchoring to Your Initial Ideas

Start By Considering Existing Solutions

Avoid Over-Using Design Patterns

Pa
tte
rn

3Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Recap of Brainstorming Steps
1) Write Ideas on Post-Its

2) Cluster Ideas by Similarity

3) Combine Ideas

Central Data Server

Client-Server

Central Data Server

Peer-To-Peer
Decentralized
File Sharing

Decentralized
File Sharing

Periodic Local
Data Cloning

4Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Recap of Tips to Solve Complex Design
Problems
• Divide And Conquer To Solve Complex Problems

• Split a complex problem into smaller sub-problems

• Solve Simpler Problems First
• Solution to simpler problem might be incomplete,

but can be extended later 1 2

5Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Design a Digital Monopoly Game!

• Changeability: The effort to change or

replace the UI is minimal

• Changeability: The effort to change or

replace fields and chance cards is

minimal

Step 0: Divide And Conquer - Identify Sub-Problems

6Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Sub-Problems
• How to update the UI (balance, position

of players, houses & hotels) when the
state of the game changes?

• How to have a diverse range of possible
chance card effects on the player while
allowing changeability?
(give/charge money, go to jail, go to next
railroad, lose houses / hotels, roll again,
…)

7Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Step 1: Write Ideas on Post-Its Central
Data Server

Decentralized
File Sharing

Step 2: Cluster Ideas by Similarity
Client-Server

Central
Data Server

Peer-To-Peer
Decentralized
File Sharing

Step 3: Combine Ideas Periodic Local
Data Cloning

Step 4: Model CRC Cards Collaborators
 Responsibilities

Component Name

Step 5: Model Interactions
ViewModel

5
min

2
min

2
min

5
min

6
min

8Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Recap of CRC Cards

Collaborators
 [List of other components that

 this component starts to

 interact with]
Responsibilities
 [Describe this component’s obligations to

 perform a task or know information]

Class / Component / Role
 [Name of the component]

A common technique for modelling software design options

9Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Generate Design Alternatives!
• How to update the UI (balance, position of

players, houses & hotels) when the state of
the game changes?

• QA Req (Changeability): The effort to
change or replace the UI is minimal

• Hint: Consider the sources of updates (what
can trigger an update) as well as the UI
elements that need to update

Step 1: Write Ideas on Post-Its Central
Data Server

Decentralized
File SharingStep 2: Cluster Ideas by Similarity

Client-Server
Central
Data Server

Peer-To-Peer
Decentralized
File Sharing

Step 3: Combine Ideas Periodic Local
Data Cloning Step 4: Model CRC Cards Collaborators

 Responsibilities

Component Name
 Step 5: Model Interactions

ViewModel6
min
5

min
4

min
3

min
2

min
1

min

10Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example UI Design Decision
Game
component
depends on UI

UI comp.
depends on
game
component,
uses Observers

Model-View-
Controller

Changes in game component
are passed to a Façade of UI-
Component. Each object calls
UI functions only on the
Façade.
UI input is returned by
executing a lambda provided
to the Façade

Observers in UI listen for
changes in the models of
the game component.

UI input is passed to a
Façade of the game
component.

Implement the
MVC
architectural
pattern

Game
Logic

UI

UI

Game
Logic

See Observer

Design PatternSee Façade

Design Pattern

11Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example UI Design Decision
Game
component
depends on UI

UI comp.
depends on
game
component,
uses Observers

Model-View-
Controller

- Easy implementation
due to simple, direct
calls update calls

- Loose coupling
- Simpler initialization

- separation of
concerns

- Initialization requires a
mocked UI
-> complexity

- Many small
updates

- Intended for
multiple different
simultaneous
views

- Complexity

Game
Logic

UI

UI

Game
Logic

12Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example UI Design Decision
Collaborators
 Game LogicResponsibilities

 Display information

 Implement update methods

 Register as observer

Component: UI

Collaborators
 UIResponsibilities

 Implement the logic of the game

 Send updates to registered UI

Component: Game Logic

UI

Game Logic
register UI update

13Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example Interaction

Game LogicUI

registerUI()
balanceChanged(newBalance, player)

update(“Balance”,
newBalance, player)

UI

Game Logic
register UI update

14Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Refined Example Interaction

game:GameFaçadeui:UIFaçade

registerUI()
updateBalance(

newBalance)

update(“Balance”,
newBalance, “p1”)

UI

Game Logic
GameFacade Player

BalanceDisplay

update balance

UIFacade

p1: Player

balanceChanged(
newBalance, p1)

p1_display: BalanceDisplay

updateBalance(
newBalance)

update balance
updateregister UI

15Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Generate Design Alternatives!
• How to have a diverse range of possible

chance card effects on the player?
(give/charge money, go to jail, go to next
railroad, lose houses / hotels, roll again,
…)

• Changeability: The effort to change or
replace fields and chance cards is minimal

• Hint: Also consider how to create and
store chance cards.

Step 1: Write Ideas on Post-Its Central
Data Server

Decentralized
File SharingStep 2: Cluster Ideas by Similarity

Client-Server
Central
Data Server

Peer-To-Peer
Decentralized
File Sharing

Step 3: Combine Ideas Periodic Local
Data Cloning Step 4: Model CRC Cards Collaborators

 Responsibilities

Component Name
 Step 5: Model Interactions

ViewModel6
min
5

min
4

min
3

min
2

min
1

min

16Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example Design Decision
Reading from JSON Abstract Factory Design Pattern

Load cards and fields from a
JSON file.
Then automatically create an
object and call setters using
the retrieved data

Implement an Abstract Factory that
creates and returns new instances
of fields and cards.

See Abstract Factory

Design Pattern

17Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Example Design Decision
JSON Abstract Factory

- Values can be changed
intuitively in an external
file

- Separation of code and
data

- Homogenous with the rest of the
software, all written in the same
language

- Tools of the programing environment
can be used for manipulation

- Corner fields can be identified better
due to method naming

- Not self-contained
within the software

- Data is not easily replaced & modified
with external tools

18Designing Large-scale Software Systems - Recitation on Brainstorming Design Alternatives

Summary
• Think of Many Design Alternatives
• Avoid Anchoring to Ideas
• Start By Considering Existing Solutions
• Avoid Over-Using Design Patterns
• Divide And Conquer to Solve Complex Problems
• Solve Simpler Problems First

