
Service Integration Testing
17-423/723 Designing Large-Scale Software Systems

Recitation 6
Mar 14, 2025



Integration Testing

● Testing that multiple components/services work together as intended
● Big-bang test: Deploy & execute all services together under different 

test inputs & check the output
● Q. Why is challenging to do in practice?

○ Dependencies on external services
○ Debugging/localizing a buggy behavior to a single component
○ Generally, slow and expensive to set up

● Eventually, you will need some big-bang tests, to make sure that your 
system works under the production-like environment

● But can we also do something that’s less expensive & difficult?



Contract Testing

● An incremental, service-by-service 
approach to integration testing

● Provider: Provides data to consumers
● Consumer: Processes data obtained 

from a provider 
● Consumer-driven Contract (CDC): 

Describes what the consumer expects 
from the provider as an output



Contract Testing: Steps

1. Write a consumer unit test: To do so, 
create a mock for the provider.

2. Create a contract (CDC) that describes 
(1) an input from the consumer to the 
provider and (2) the expected output.

3. Run the consumer unit test (with the 
mock).

4. Publish the contracts: Share all CDCs in 
a machine-readable form.

5. Test the provider: Run all CDCs against 
the provider.



Example: Online Store System

Order
Service

Payment
Service

Inventory
Service

● Order Service: Handles orders from customers. 
● Payment Service: Processes payments for orders.
● Inventory Service: Manage the stock levels for different items. 

Reserve items for a processed order.



Contract between Order & Payment Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

● Consumer unit test: Test a scenario where a customer order is 
successfully handled and finalized.

● The unit test includes (1) a mock of Payment Service and (2) a 
contract from Order to Payment Service

POST /payments



Contract between Order & Payment Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

Request Expected response

POST /payments



Contract between Payment & Order Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

● This contract is stored and published, to be used as a test 
for the Payment Service

● Running this test requires another contract, this time from 
Payment to Inventory Service

POST 
/inventory/reserve



Contract between Payment & Order Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

POST 
/inventory/reserve

Request Expected response



Contract between Payment & Order Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

POST 
/inventory/reserve

● This second contract is also stored and published, to be 
used as a test for the Inventory Service

● This whole process can be repeated for other tests for Order 
Service, resulting in additional contracts



Contract between Payment & Order Services

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

POST 
/inventory/reserve

Request Expected response
Note: Running this test 
requires Inventory 
Service to have 
sufficient stock for the 
items!



Contract with Precondition over Provider State

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

● In general, a contract may depend on the provider being under 
a particular state 

● Such a contract must also specify a precondition over the 
provider state
○ e.g., “Inventory Service has at least 2 items for P001”



Contract with Precondition over Provider State

Order
Service

Payment
Service

Inventory
Service

Consumer Provider

● In general, a contract may depend on the provider being under 
a particular state 

● Such a contract must also specify a precondition over the 
provider state

● When testing the provider, write a setup code to bring the 
provider into a state that satisfies this precondition



Contract Testing: Benefits

● Allows services to be tested without having 
to run all of them

● When a provider changes, contracts can 
be used as regression tests, to detect 
whether the change affects its consumers 

● Q. How are contracts here different from 
interface specifications?



Activity: Write Contracts for Project Services

● Link to the shared Google Doc
● Work with your team members
● For your scheduling application or the service that you are 

developing for M3/M4:
○ Develop a unit test to test behavior that involves a dependency 

on an external service
○ Write a contract for the external service, including (1) 

consumer input, (2) expected provider output, and (3) 
precondition on the provider state (if necessary)

○ Share the contract with the team for the provider service

https://docs.google.com/document/d/1qijpbe_WLIPer9LIIeI6gwQCS97pLLXvjiS-Go-nkgc/edit?usp=sharing


Contract Testing Tools

● Pact: An open-source 
framework for contract testing

● Automates the process of 
creating, storing, and 
publishing contracts (Pact 
Broker)

● But contract testing can be 
done without a tool!
○ Document & share 

contracts with other teams!

https://pact.io/

