17-723: Designing Large-scale Software Systems

Recitation on Design Tradeoffs

Tobias Dürschmid

Design A Server-Supported Robot Warehouse Navigation System

Design a Robot-Server Communication System that supports Collision Avoidance and Route Planning

What **Requirements** are Important?

Robustness -

The robot should be able to operate safely even if the network is unavailable.

Changeability

Updating robot software should be possible without a robot hardware connection.

Scalability 01/

Adding new robots to the system should not degrade individual robot performance.

The hardware and operating cost of robots, network, and server should be minimal.

Implementation Effort 🔏

The effort to implement robot and server software should be minimal.

Changeability

Interface Description (

(of robot software update API)

Updating robot software should be possible without a robot hardware connection.

Scalability 🕂

Cost

Up to YOU!

Adding new robots to the system should not degrade individual robot performance.

Hardware Annotations

The hardware and operating cost of robots, network, and server should be minimal.

Implementation Effort

CRC Cards / Component Diagram

The effort to implement robot and server software should be minimal.

Shuffle the Groups to Review your Designs Shuffle

Designing Large-scale Software Systems - Recitation on Design Tradeoffs

The robot should be able to operate safely even if the network is unavailable.

Interface Description

(of robot software update API)

unavailable network)

Updating robot software should be possible without a robot hardware connection.

Scalability 0/ Up t

Up to YOU!

Adding new robots to the system should not degrade individual robot performance.

Hardware Annotations

The hardware and operating cost of robots, network, and server should be minimal.

Implementation Effort

Changeability

Cost

CRC Cards / Component Diagram

The effort to implement robot and server software should be minimal.

Summary

- Redundancy (separate navigation software on the robot side) / Graceful Degradation can be used to ensure robustness but increases implementation effort and potentially robot hardware cost
- Centralized navigation on the server-side is cheaper, more changeable, but less robust, and less scaleable
- Software update changeability is mostly independent of other QAs and can be implemented with a Robot Software Update API (but this can impact security!)

Credits: These slide use images from Flaticon.com (Creators: Freepik, IconBaandar)